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ABSTRACT 

New micromechanical models for the prediction of particulate composite mechan­

ical behavior have been developed. The models use an energy balance concept to account 

for nonlinear behavior due to particle debonding and incorporate a composite modulus 

prediction routine based on an improved Mori-Tanaka method. This method permits par­

tide interaction effects to be taken into account and allows the stiffness matrix for voids 

or vacuoles to be explicitly stated in the model. To demonstrate the characteristics of 

the improved Mori-Tanaka method, comparisons with 2-phase and 3-phase modulus data 

were made. The micromechanical models developed for void and vacuole formation were 

evaluated against available mechanical behavior data. Comparisons showed that the model 

derived for vacuole formation predicted the mechanical behavior correctly for two types of 

model composites which contained inclusion volume fractions ranging from 0.2 to 0.5. The 

inability of the models to predict the initial stress-strain behavior of a composite containing 

a volume fraction of 0.22 of well-bonded particles suggests that the nonlinear matrix effects 

need to be included in the present model formulation. 

Les nouveaux modeles micromecaniques pour la prediction de comportement des 

composites charges ont ete developpes. Les modeles utilisent un concept d'energie pour tenir 

compte de la perte due aux decollements de particules. Les modeles emploient aussi une 

technique crees par Mori et Tanaka pour calculer le module de composite. Grace a cette 

methode, on peut inclure dans nos equations les effets d'interaction entre les particules 

et les effets de types de decollement soit les vides ou les vacuoles. Pour demontrer les 

caracteristiques de cette nouvelle methode Mori-Tanaka, on a effectue des comparaisons 

avec les composites de 2 et 3 phases. Les modeles micromecaniques ont ete evalues avec les 

donnees de comportement mecaniques disponsibles. Les comparaisons ont demontre que 

le modele pour les vacuoles a calcule correctement les comportements pour deux types de 

composites d1arges avec 0,2 jusqu'a 0,5 fraction volume de particule. Le fait qu'il y avait 

des problemes avec les predictions de module initial pour le composite charge avec 0,22 

fraction volume de particule indique que l'effet de la non-linearite de la matrice devrait etre 

indus dans la composition actuelle. 
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EXECUTIVE SUMMARY 

Propellants are presently characterized from a macroscopic point of view. This 
means that the mechanisms that govern material behavior are lumped together and mea­
sured as a unit to produce a material property. This approach does not provide the quan­
titative information required for modifying a formulation. To meet this need, an analytical 
model that predicts the material properties from knowledge of factors such as particle size 
distribution, volume fraction of particles, adhesion energy and polymer properties is re­
quired. This ability to predict mechanical properties has important consequences for the 
determination of rocket motor service life. If the properties of the motor grain can be pre­
dicted before the propellant is cast, motor service life can be determined. If the calculated 
service life is deemed too short, the model can be used to guide the type of adjustments that 
need to be made to extend the service life of the motor. This capability would represent 
major savings in development and life cycle management costs because service life related 
problems could be resolved before the motor is fielded. 

In recent years, researcher.s in the propellant industry have begun to use composite 
materials concepts for predicting the stress-strain behavior of propellants. These concepts, 
based on a microscopic point of view, take into account the size, shape and quantity of 
filler introduced into polymeric matrices. Previously, the strengths and weaknesses of the 
Anderson-Farris micromechanical model were examined using experimentally derived data. 
This model was based on an energy balance concept and calculated composite modulus using 
a differential scheme. It was shown that the model could predict the mechanical behavior 
of highly loaded composites if a representative value of adhesion energy was available. 

In this report, new micromechanical models for the prediction of propellant me­
chanical behavior have been developed. The models again use energy balance to account 
for nonlinear behavior due to particle debonding. However, composite modulus is predicted 
using a routine based on an improved Mori-Tanaka method. This method permits parti­
cle interaction effects to be taken into account and allows the stiffness matrix for voids or 
vacuoles to be explicitly stated in the model. Comparisons with literature modulus data 
showed that tensile modulus could be predicted accurately with the improved Mori-Tanaka 
method. Comparisons with literature stress-strain data also showed that the model derived 
for vacuole formation predicted the mechanical behavior correctly for two types of model 
propellants which contained inclusion volume fractions ranging from 0.2 to 0.5. 
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NOMENCLATURE 

L = length F = force 

square brackets [ ] denote dimensions of the quantity 

Aiikl = (Cfimn Ci.;mn)-1 
• C~nkz, [FL- 2

] 

Bijkt (Ci.;mn- Ci.;mn)-1 
• C~nkz, [FL-2

] 

Cijkl average elastic constants of composite, [ F L - 2] 

Cfjkl elastic constants of comparison material, [FL-2] 

C[jkl elastic constants of phase-r material, [FL-2] 

ci volume fraction of inclusions, [ -] 
c~ initial volume fraction of inclusions, [-] 
cr volume fraction of phase-r inclusion, [ -] 
cv volume fraction of voids or vacuoles, [ -] 
E average composite tensile modulus, [F L - 2] 

Ec average composite tensile modulus, [F L-2] 

Ei inclusion tensile modulus, [F L - 2] 

Em matrix tensile modulus, [FL-2 ] 

E composite energy, [F L] 
Eint interaction energy, [F L] 
£0 comparison material energy, [F L] 
Gc adhesion energy, [F L] 
Iijkl identity matrix, [-] . 
]( average composite bulk modulus, [F L - 2] 

PJ maximum packing fraction, [-] 
S surface area of inclusion, [L2] 

S!fzk Eshelby matrix of phase-r material, [ -] 
uij prescribed surface displacement, [L] 
ufi constrained displacement, [L] 
V volume of inclusion [L3 ], 

Y interaction function [-], 
Y m interaction function multiplier, [-] 

Dij Kronecker delta, [ -] 
Ecr critical strain, [L/ L] 
Eij average composite strain, [ L / L] 
lij average perturbed strain, [L/ L] 
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€~j constrained strain, [L/ L] 
€£j eigenstrain, [L/ L] 

€£J c corrected eigenstrain of phase-r material, [L/ L] 

£iJ u uncorrected eigenstrain of phase~r material, [L/ L] 

fijkl correction matrix of phase-r material, [-] 
>., f.L Lame constants, [F L-2 ] 

71 average composite shear modulus, [ F L - 2 ] 

17 average <:omposite Poisson ratio, [-] 
ifij average perturbed stress, [FL- 2 ] 

O'j prescribed surface stress, [F L - 2] 

O'[j constrained stress, [F L-2] 

uf/ constrained stress of phase-r material, [F L - 2
] 

ufi inclusion stress, [ F L - 2] 

uf/ inclusion stress of phase-r material, [F L-2
] 

uti eigenstress, [F L - 2] 
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1.0 INTRODUCTION 

The use of micromechanics for predicting ma.terial properties is not new in the 

field of composite materials (Refs. 1-9). In recent years, researchers in the solid propellant 

industry have begun using composite materials concepts for predicting the stress-strain 

behavior of oxidizer/binder type propellants to assess the impact that a formulation may 

have on a propellant's final mechanical properties (Refs. 10 and 11). 

In Refs. 12 and 13, the authors hypothesized that nonlinear mechanical behavior in 

filled polymers was caused by the debonding of inclusions from the matrix. They modeled 

this process through an energy balance model which decreased inclusion concentration and 

increased void concentration. The composite's mechanical behavior was determined by the 

resulting composite modulus. An evaluation of their technique was made in Refs. 14 and 15. 

It was concluded that their model could predict the mechanical behavior of highly loaded 

composites if a representative adhesion energy was available. 

Refs. 12 and 14 calculated composite modulus using the Farber-Farris (F-F) routine 

(Ref. 16). This routine is an incremental scheme based on a model that was developed for 

the prediction of viscosity of highly concentrated suspensions. In this article, the F-F routine 

has been replaced by a modulus prediction routine which is based on the Mori-Tanaka 

(M-T) method (Ref. 17). This method has received much attention recently because it 

permits closed-form solutions for multiphase anisotropic composites (Refs. 18 and 19). By 

including recent work from Ju and Chen into the M-T method, particle-particle interaction 

effects can be taken into account (Refs. 20 and 21). This results in an improved modulus 

prediction routine and subsequently, an improved micromechanical model for the prediction 

of mechanical behavior of particulate-filled composites. 
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The characteristics of the improved M-T modulus prediction routine will be exam-

ined and compared with modulus data available in the literature. As well, comparisons 

will be made with F-F predictions to illustrate the differences between the two routines. 

The consequences of using the improved M-T routine for prediction of mechanical behavior 

of model particulate composites will be shown for two cases. The first case will model 

debonded particles using spherical voids to simulate completely debonded inclusions. The 

second case will model debonded particles using orthotropic inclusion properties to simu-

late spherical inclusions entrapped by spheroidal voids. Comparisons will be made between 

theoretical predictions of mechanical behavior and available literature data. This study was 

undertaken at DREV between January 1994 and March 1995 under PSC 32C, Rockets and 

Missiles. 

2.0 COMPOSITE MODULUS PREDICTION 

Mori and Tanaka showed that the internal stress at any point in a medium con-

taining a finite concentration of inclusions was comprised of an average uniform, stress and 

local fluctuating stresses which were found near the inclusions (Ref. 17). They also showed 

that the average of all the local fluctuating stresses in the matrix was zero. A key feature 

in their presentation was the use of Eshelby's equivalent inclusion method (Ref. 22). 

Given the importance of the Eshelby and Mori-Tanaka methods to the current work, 

it would be appropriate to begin with an overview of Eshelby's concepts and a discussion 

of the salient points leading to the Mori-Tanaka formulation. 
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2.1 Eshelby's Equivalent Inclusion Method 

Eshelby developed a theory to examine how a far field uniform applied stress or 

strain is disturbed by a single inclusion in an infinite elastic matrix. He presented it in the 

form of a simple series of cutting, straining and rewelding operations. Conceptually, the 

steps were: 

1. Remove the inclusion from the matrix and allow it to undergo a uniform stress-free 

strain, ei'i· The stress-free strain is also known as the transformation strain or eigen­

strain. The transformation or eigenstress due to the transformation strain would be, 

where A and 11 are the matrix Lame constants. 

2. Apply a surface stress -O';ini to the inclusion to bring it back to its original shape. 

Embed the particle back into the matrix. Consider this as the zero strain point for 

the inclusion and the matrix. 

3. Allow the surface stress -O'fini to relax. The inclusion will see a change in stress of 

-O'lini + b.O'ijnj while the matrix will see an equal and opposite stress of crfini -

The fact that the inclusion had different properties than the surrounding matrix 

gave rise to relaxed or constrained strains, efj, in the matrix or inclusion. The relaxed 

or constrained stresses in the matrix in terms of the matrix properties were shown to be 
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[1] 

By examining the elastic field in an ellipsoidal inclusion, Eshelby arrived at an important 

relationship between the constrained strains and the eigenstrains, 

[2] 

wher·e St.jkl is known as the Eshelby tensor. The tensor is a function of the matrix Poisson 

ratio and the shape of the inclusion. 

Eshelby had also shown that the interaction energy between the constrained elastic 

field u~ with an applied elastic field uf could be defined as 

where 

S = surface area of inclusion, 
o-q· constrained inclusion or matrix stress, 

A. o-ij = prescribed surface stresses, 
u~ = constrained inclusion or matrix strain, 
uf = prescribed surface displacements. 

[3] 

Using the continuity of o-[j and o-ii across the inclusion surface, Gauss' theorem, the 

equivalence o-6qj = o-fiEiJ and eq. 1, eq. 3 could be written as 

[4] 

[5] 

where 
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V volume of inclusion, 
o-j = prescribed surface stresses, 
q'!'. = inclusion eigenstresses, 
~ prescribed surface strains. tJ 

t:'!' • = inclusion eigenstrains. tJ 

The interaction energy £int was useful because it could be used to find the elastic 

constants of a composite. Using a comparison material with stiffness properties Cf.ik1-
1 

along with eq. 5, the energy of the composite,£, for prescribed stresses was 

[6] 

For prescribed strains, the energy of the composite was 

~C!>.k1dd- ~ { o-A£'!'·dV 
2 •J ' 3 ' 3 2 lv '3 ' 3 [7] 

The meaning of the energy equations may be interpreted in the following manner. 

For hard inclusions (;\i > Ao and f..ti > f..t 0 ), the inclusion deforms less than the comparison 

material for a prescribed strain Ej. This is equivalent to Eshelby's case where an inclusion 

spontaneously contracts ( -E'[j) in an elastic medium due to phase or temperature change. 

From eq. 7, the negative transformation strain signifies that the composite material has 

an increased capacity to store energy in relation to the comparison material. Thus, the 

elastic constants of the composite are greater than that of the comparison material. For 

soft inclusions CAi < A0 and f..ti < J.L0 ), the inclusion deforms more than the comparison 

material. Thus, the composite has a decreased capacity to store energy. This leads to a 

composite with elastic constants which are less than those of the comparison material. A 

similar arguement can be used with eq. 6. 
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Using the definitions "lkz = Cijkl-
1crj and E%z = Cijk1-

1crj, eq. 6 may be used to 

show that the average composite strain is 

where 

Ekl = average composite strain, 
£%1 comparison material strain, 
c = volume fraction of the inclusion, 
E'k1 eigenstrain of the inclusion. 

Conversely, it can be shown with eq. 7 that the average composite stress is 

where 

7fij = average composite stress, 
crfj = comparison material stress, 
c = volume fraction of the inclusion, 
cr"!. = eigenstress of the inclusion. 

tJ 

2.2 The Mori-Tanaka Method 

[8] 

[9] 

The Mori-Tanaka method has been used to analyze a series of problems ranging 

from the determination of composite elastic constants (Ref. 19) to the determination of 

stresses in and around inclusions (Ref. 23). Following Weng (Ref. 18), the term "phase" 

will be applied to a collection of inclusions whose shape, orientation and elastic moduli are 

identical. The superscript r will be used to identify an r-th phase of inclusions. 

The development of the Mori-Tanaka method proceeds as follows (Ref. 23). For a 

prescribed stress crj, let the average strain produced in an elastic composite and comparison 
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material be defined as 

where 

prescribed surface stresses, 
average elastic constants of the composite, 
average composite strain, 

= elastic constants of the comparison material, 
= comparison material strain. 

[10] 

[11] 

Letting the average perturbed stress due to the presence of all inclusions be defined 

as Crij, the corresponding perturbed strains are fij. The overall stress in the comparison 

material is 

[12] 

Looking at the stresses in the inclusion, it will differ from the stresses in the com par-

ison material by an amount equivalent to Eshelby's constrained stresses due to the difference 

in material properties. The inclusion stresses in terms of the inclusion properties C[jkl are 

[13] 

Using Eshelby's inclusion method eq. 1, the inclusion stresses in terms of the eigen-

strains are 

[14] 

Mori and Tanaka showed that the volume integral of all perturbed stresses in a 

representative volume element (RVE) was zero. In other words, the perturbed stresses were 
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in equilibrium with the constrained stresses. Assuming that all particles in the RVE were 

equally stressed, equilibrium required 

[15] 

Subtracting eq. 12 from eq. 14 and using eq. 2 for phase r, 

[16] 

Defining the identity tensor as lijkl = i(8ik6il+8u6jk) and using eqs. 11,12 and 16 

in eq. 15, the perturbed strains are 

[17] 

By setting the third term in eq. 13 equal to the third term in eq. 14 and making use 

of the definitions for comparison strains in eq. 11, constrained strains in eq. 2 and perturbed 

strains in eq. 17, the governing equation for the composite is 

(18] 

2.3 Correction for Particle-Particle Interaction 

Ju and Chen (Ref. 21) formulated new ensemble-averaged constitutive equations 

based on Eshelby's equivalent inclusion principle. The equations took into account particle-

particle interaction effects. Previously, Weng (Ref. 18) had shown that the Mori-Tanaka 

(M-T) method could be reduced to give the Hashin-Shtrikman (H-S) lower bound as a spe-

cial case. Experimental data has shown that the M-T method and the H-S lower bound 
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underestimated slightly composite modulus (Refs. 24 and 25). Ju and Chen showed that 

by accounting for particle interaction, their model could reproduce experimental data more 

closely. As a special case, their model reduced to the M~ T equations when particle interac-

tion was ignored. This meant that the M-T results and the H-S lower bounds corresponded 

to a micromechanical model with non-interacting particles. 

The solution in Ref. 21 for particle interaction comes in a form convenient for 

inclusion in a M-T formulation. Since the theory is based on Eshelby's equivalent inclusion 

principle, the correction matrix, rr, could be cast in terms of the uncorrected eigenstrain 

solution. From this point on, braces will be used to denote vectors and brackets will be 

used to denote square matrices. The corrected eigenstrain vector of phase-r was shown to 

be 

[19] 

where 

{ €~r} = interacting or corrected eigenstrain of phase-r, 
[rr] [I]+ *Y[Wr], 
{<r} non-interacting or uncorrected eigenstrain of phase-r, 
[I] = identity matrix, 
cr = volume fraction of phase-r, 
y = interaction factor, 
[Wr] = (I fiij{ikl + (2( {iik{ijl + {iil{ijk), 

(1 = 12(13V0 - 14v.;)- 3!~c;;e(1- 2v0 )(1 + l/0 ), 

(2 = 6(25- 34V0 + 22v.;)- 3;~~,e(1- 2v0 )(1 + V0 ), 

a: = 2(5v, -1) + 10(1- v,) (I<~'k.- ~), 
(3 = 2(4-5v0 )+15(1 V0 ) ~), 
Vo = Poisson's ratio of comparison material, 
Ko, Kr = bulk modulus of comparison and phase-r inclusion, 

f-Lo, /-Lr = shear modulus of comparison and phase-r inclusion. 

In eq. 19 the inter-particle effects are quantified by the second term in [rr]. As ex-

plained in Ref. 21, this matrix was derived from the analysis of probabilistic pairwise particle 
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interaction of two identical and randomly located elastic spheres which are embedded in a 

comparison material. 

The factor Y (Ref. 21) is related to the microstructure of the composite and is 

characterized by a radial distribution function, g( r ). For a statistically uniform radial 

distribution function where g(r) = 1, Y = 1/24. It will be shown later that [rr] causes 

certain problems in the recovery of [Cr] when cr = 1. This can be remedied by selecting a 

modified form of Y. This point will be discussed further in Sec. 6.0. 

3.0 ELASTIC PROPERTIES OF A TWO-PHASE COMPOSITE 

The average composite modulus for an elastic medium containing a finite concen-

tration of inclusions may be calculated using the energy equation that Eshelby developed 

but extended for multiple inclusions. If the domain of integration in eq. 6 is extended for 

finite concentrations of inclusions of phase r, then the following equation can be written 

[20] 

This leads naturally to a modified form of eq. 8 which denotes that all particles of phase r 

are taken into account, 

[21] 

where { £~r} is defined in Sec. 2.3. The form of eq. 21 is slightly different than that found 

in Ref. 18. Here the interacting eigenstrain is used. However, if [rr] is set equal to [I], the 

non-i:nteracting eigenstrain is easily recovered. This would give an average composite strain 

identical to that found in Ref. 18. 

The average elastic constants for a two-phase composite can be determined in a 
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two-step process using the equations discussed in Sees. 2.2 and 2.3. First, eqs. 18 and 19 

are used in eq. 21 to obtain 

[22] 

Note that t:'£:/ in eq. 18 is identical to { €~r} in eq. 19. Second, solving eq. 21 for { €0
} and 

substituting it into eq. 11 gives 

[23] 

Then using eqs. 19 and 22 into eq. 23 and making a sign change, the average elastic properties 

can be expressed as 

Comparison of eq. 24 with that of eq. 53 in Ref. 21 shows that the two are not 

identical for the case where particle interaction is taken into account. The difference occurs 

because Ref. 20 derived the volume-averaged strain tensor by integrating Green's function 

over a representative volume element to arrive at a definition that was a function of the 

uniform far-field strains, the eigenstrains and a depolarization tensor. 

4.0 ELASTIC PROPERTIES OF A THREE-PHASE COMPOSITE 

In order to predict the mechanical behavior of a particulate composite, the model 

in Refs. 12 and 14 required new elastic moduli be calculated each time a group of inclusions 

are debonded. The elastic modulus of a composite with bonded and debonded inclusions 

was assumed equivalent to the elastic modulus of a composite which contains inclusions 

and voids. Thus, the case of a three-phase composite is of special interest here because the 
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debonding process in the above assumption changes the initial two-phase composite where 

all inclusions are bonded to the matrix into a three-phase composite where some particles 

become debonded thereby creating voids or vacuoles. The distinction between a void and 

vacuole is that a void is a spherical air bubble while a vacuole is a spheroidal air pocket 

which surrounds a debonded inclusion. 

The average elastic properties for a 3-phase composite can be derived using the 

procedure outlined in Sec. 3.0. The only difference is that the summation of phases will 

. now be used. Therefore, eq. 18 is modified by explicitly specifying the number of phases in 

eq. 17. The two resulting equations from consideration of each phase are 

where 

-{Eo} = (ci[I -Si] + [Si] + (A]){£*i} + cv[I -Sv]{£*v} 

-{ £0} = ( cv[I- sv] + [SV] + [B]){ c*V} + ci[I- Si]{ £*i} 

[A] [Ci-co]-1. [co], 
[B] = [Cv-co]-1. [Co], 
~ = parameters relating to inclusions, 
v = parameters relating to voids or vacuoles. 

Subtracting eq. 26 from eq. 25 gives the relationship between { £*i} and { c*v}, 

[25] 

[26] 

[27] 

Following the procedure outlined in Sec. 3.0, the non-interacting eigenstrains for 

the inclusion and void or vacuole are 

{£~i} = -(ci[I-Si ri]+[Si]+[A] 

+cv[I _gv_rv]. [Sv + B]-1. [Si + A])-1{€} [28] 
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{<v} -(cti[I-Sv-rv] +[Btl]+ [B] 

+ci[I -Si-r']· [Si + A]-1 ·[Btl+ B])-1 {€} [29] 

As before, starting from eq. 11, the substitution of eqs. 21, 19, 28 and 29 gives the 

average elastic properties of a 3-phase composite as 

[C] = [C0
] ·([I] + ci[ri](ci[I -Si-ri] + [Si] +[A] 

+cti[J- Btl- rtl] . [Btl + B]-1 . [Si + A])-1 

+ cv[rv](cti[J -Stl-rtl] + [Sv] + [B] 

+ci[I- Si- ri] · [Si + A]-1 ·[Btl + B])-1 ) 

[30] 

As mentioned in Sec. 2.1, the Eshelby tensor [S] is dependent on the matrix Poisson 

ratio v0 and the inclusion shape. Reference 23 gives [S] for spheroidal inclusions. For 

spherical inclusions [S] is defined by Ref. 21 as 

[31] 

For the case where the debonded inclusions are modeled by equivalent sized spherical 

voids, the property matrix [Cv] can be set to zero. Alternatively, isotropic void properties 

can be specified to simulate partially debonded inclusions. This technique was used in 

Ref. 12. In either case, the average composite properties remains isotropic so the usual 

engineering elastic constants like bulk, shear and tensile modulus and Poisson's ratio may 

be found from eq. 30 using 
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(1/3)(Cnn + 2Cu22) 

{1/2)(Cnn + Cu22) 

c 2Cu22C2211 
1111- c 

2222 + C2233 
c2211 

c 2222 + c 2233 

[32] 

In the case of modeling vacuoles, Mochida (Ref. 26) suggested that the boundary 

conditions around a debonded inclusion may be specified as 

0 v_cv (o +-+c) (jii - iikl t:kz t:kz t:kz [33] 

0 (34] 

Assuming the load is applied in the ii-direction and the equator of the particle is represented 

by the jj-direction, eqs. 33 and 34 state that no stresses are experienced by the inclusion 

in the loading direction and no lateral contraction is allowed around the equator. 

Attempting to apply Mochida's boundary conditions to the present formulation 

results in a trivial solution where {E*} {0} because application of eqs. 33 and 34 to 

eqs. 13 and 14 leads one to conclude that 

An alternative to Mochida's method is to model the debonded phase as a spherical 

inclusion with orthotropic properties. A low or zero modulus value in the loading direction 

can be used to represent the debonded condition and a high or inclusion modulus value 

in th•e equator direction can be used to enforce the lateral constraint condition. Since the 
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M-T formulation can be applied equally well to inclusions with orthotropic properties as 

to inclusions with isotropic properties, this approach can be implemented by modifying the 

definition of the debonded particle's material matrix. The property matrix for the normal 

components of an orthotropic material is (Ref. 27) 

where 

[ 

En(1- v23V32) En(v21 +v23V31) 

[Cv] = m E22(v12+v13V32) E22(1- V13V31) 

E33(v13 + v12v23) E33(v23 + v13v21) 

En(v31 +v21V32) l 
E22(v32+v12v31) 

E33(1- V}2V21) 

m 
E-· u 

Vij 

5.0 

= 
= 
= 

(1- V12V21- V13V31- V23V32 V12V23V31- V13V21V32)-l, 

tensile modulus of vacuole in the ii-direction, 
Poisson's ratio of vacuole in the ij-direction. 

CRITICAL STRAIN FOR ORTHOTROPIC COMPOSITES 

[35] 

The prediction of mechanical behavior is performed using an energy balance model 

which is derived in terms of critical strain. Critical strain is defined as the point where the 

internal strain energy in the composite and the energy released due to particle debonding 

equals the work put into the composite. This statement can be expressed as (Refs. 12 and 

14) 

[36] 

where Gc is the adhesion energy between particle and matrix, 8A is the variation in surface 

area, (jij is the composite stress, Eij is the composite strain and V0 is the specimen volume. 

Examining the case of a uniaxial bar under tension and ambient pressure, eq. 36 

can be simplified to (Refs. 12 and 14) 

[37] 
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where ui\ is the applied stress in the 11-direction and Ecr the critical strain. The boundary 

conditions u22 U33 = 0 and E22 = €33 were used. 

By using the same boundary conditions on the constitutive equation for an or-

thotr-opic material ( eq. 10), the transverse strain is 

c2211 
€22 = - Ecr c 2222 + c 2233 

[38] 

Using eq. 38 to solve for ui\ in eq. 10, the simplified constitutive equation is 

A (n 2Cn22C2211 ) 
Un = v1111- n · n Ecr 

v 2222 + v 2233 
[39] 

Taking the variation of ui\ and substituting it and eq. 39 into eq. 37 gives 

[40] 

This equation is valid for orthotropic composites under uniaxial tension and ambient pres-

sure. It assumes the RVE is larger than the largest particle so that average stress, strain 

and modulus can be used. If [C] is isotropic th~n eq. 40 reduces to 

[41] 

where 8E is the variation in tensile modulus. 

To solve eq. 40 or eq. 41, the variational quantities are changed to incremental 

quantities based on inclusion concentration. For example, 8 A would change to llA/ !lei. The 

algorithm to generate the composite's stress-strain behavior has been outlined in Refs. 14 

and 15. 
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6.0 MODULUS PREDICTION PERFORMANCE 

The performance of the energy balance model in Ref. 14 is directly related to the 

performance of the composite modulus prediction routine employed. Therefore, it is of in-

terest to examine the prediction characteristics of the composite modulus models developed 

in Sees. 3.0 and 4.0. To accomplish this task, the models will be compared with experi-

mental data obtained from Refs. 25, 29 and 30. As well, they will be compared with the 

Farber-Farris predictions (Ref. 16). The Farber-Farris routine was originally used in the 

energy balance model in Ref. 14. The Mathematica (Ref. 28) input file used for genera-

tion of the Mori-Tanaka data may be found in Appendix A. A summary of the constituent 

properties for the composites used in this document are shown in Table I. 

6.1 Comparison with Glass/Epoxy Composite 

A comparison of the 2-phase composite predictions ( eq. 24) with experimental data 

obtained from Smith (Ref. 29) and theoretical predictions using the Farber-Farris routine 

is shown in Fig. 1. Smith's composite system consisted of glass spheres embedded in epoxy 

(Ed Em 25). Three variations of the 2-phase model are shown. 

The first variation is the Mori-Tanaka model where no particle interaction is ac-

counted for (denoted M-T in Fig. 1, [F] = [I] in eq. 24). This variation will be called 

simply the M-T model. It can be seen that the M-T model underpredicted Smith's data at 

volume fractions ci above 0.3. This was not surprising since Ref. 18 showed that the M-T 

solution was equivalent to the Hashin-Shtrikman lower bounds. 

The second variation (called M-T interaction) is the M-T model corrected for par-
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tide interaction ([P] withY = 1124). This variation fared better up to ci = 0.4. However, 

between 0.4 < ci < 0.63, the normalized composite modulus, Eel Em, rapidly rose. At 

ci = 0.63, it dropped suddenly. Between 0.63 < ci < ·1, Eel Em rose back up to -2. It 

was obvious that this undesirable behavior was being caused by the introduction of the 

correction matrix [rr]. An examination of eq. 24 showed that unless [rr] -+ [I] as ci -+ 1, 

the inclusion properties could never be recovered. One way of forcing this behavior was to 

introduce a factor 1- ci into the definition of Y in eq. 19. 

Thus, the third variation (called M-T modified) is the M-T model corrected using a 

modified particle interaction factor ([rr] withY= (1- ci)l24). This model behaved much 

better and gave good predictions up to ci = 0.5. In comparison with the Farber-Farris 

predictions in which a maximum packing fraction PJ = 1 was used (denoted F-F in Fig. 1), 

the M-T modified model gave similar results. 

An attempt was made to see if Y = (1- ci)l24 had any significance when compared 

with the traditional radial distribution function predicted by the Percus-Yevick solution 

(Refs. 31 and 32). A comparison showed there was no similarity between the two. Thus, 

the function Y used here only provides a means of recovering inclusion properties and cannot 

be seen as an indicator of microstructural features as suggested by the authors in Ref. 21. 

6.2 Comparison with Tungsten-Carbide/Cobalt Composite 

A similar comparison is made using experimental data obtained from Ravichandran 

(Ref. 25). Here the composite system is a tungsten-carbide/cobalt cermet (Ed Em=3.4). 

The results are shown in Fig. 2. 
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In contrast to Fig. 1, Fig. 2 shows that the predicted Ee/ Em rises smoothly for 

the entire range of ci. This is a consequence of the low inclusion to matrix modular ratio. 

This material system demonstrates the sensitivity of the M-T interaction solution to the 

constituent properties. 

The M-T modified and Farber-Farris solutions give almost identical results while 

the M-T solution gives slightly lower modulus values. These three models tended to un-

derpredict the experimental data. The M-T interaction solution shows that it overpredicts 

modulus in the neighborhood of ci = 0. 75 and above. 

6.3 Comparison with Glass/Polyurethane Composite 

As a final comparison, the experimental data from Yilmazer is used (Ref. 30). The 

glass bead/polyurethane composite had an Ed Em > 16000. This material system exhibited 

behavior that was different than the previous two. At ci = 0.5, the normalized modulus 

measured by Yilmazer was Eel Em = 13. When other references (Ref. 25 in Ref. 25, Refs. 

29, 33, 34 and 35) were examined, generally Eel Em < 5 at ci 0.5. 

The Farber-Farris solution underpredicted the experimental results when the max-

imum packing fraction Pf = 1 was used (see Fig. 3). To bring the F-F solution up to 

the measured data, PJ was set equal to 0.6. The fact that a packing fraction is required 

indicates that the additional reinforcement seen in this material system is not due to the 

Ed Em alone but includes some other reinforcing mechanism like particle interaction. 

As expected the M-T solution underpredicted the experimental data. Again, to 

reproduce the experimental data, a modification to the definition of Yin eq. 19 was required. 
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This time, an interaction factor multiplier Ym = 1.26 was added giving Y = Ym(1- ci)/24. 

The value for Ym was found through trial and error. Like the maximum packing fraction, 

Ym provides an indication of additional reinforcement through particle interaction. As can 

be seen from Fig. 3, the M-T modified solution reproduces the measured moduli quite well. 

6.4 Comparison for Three-Phase Composites 

Experimental data for the modulus of three-phase composites is scarce (Ref. 18). 

A study by Ishai and Cohen on a composite system comprised of sand and voids in a matrix 

of epoxy is frequently used for evaluation of three-phase models (Ref. 35). The modular 

ratio for this system is Ed Em = 36. Huang (Ref. 36) showed that the volume fraction of 

sand ci varied with volume fraction of voids cv according to ci = 0.173(1- cv) for the Ishai 

and Cohen data. With composites containing void volume fractions of 0.1 < cv < 0.6, the 

inclusion volume fraction was within a narrow range of 0.16 > ci > 0.07. 

Figure 4 shows a comparison of the Farber-Farris (F-F) model and the 3-phase M-T 

model ( eq. 30). Two variations of the M-T model have been used. The first is the M-T 

model with no particle interaction (denoted M-T in Fig. 4). The second is the modified 

M-T model with particle interaction between inclusions and between voids (denoted M-T, 

ri, ru). An interaction factor of Y = (1 - ci)/24 was used for the inclusions and voids. 

As Fig. 4 shows, all models predicted the experimental composite moduli well. This was 

expeded since the inclusion loading was fairly low. Small differences between the three 

models can be seen though. The F-F model tended to predict higher moduli at the lower 

void concentrations and vice versa at the higher void concentrations. The M-T model 

predicted higher moduli than the F-F model and the modified M-T model at the higher 
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void concentrations. The modified M-T model predicted the experimental data over the 

entire range except at cv = 0.4 where it overpredicted the composite modulus. 

A further understanding of the 3-phase M-T model is gained by predicting composite 

modulus using the Yilmazer glass bead/polyurethane (Ref. 30) and Smith glass bead/epoxy 

(Ref. 29) property data. Since the energy balance model (Sec. 5.0) assumes debonded 

inclusions will become voids or vacuoles, the void or vacuole volume fraction varies according 

to cv = c~ - ci. An initial inclusion volume fraction c~ of 0.5 has been selected here. Voids 

were modeled by setting [Cv] = [0]. Vacuoles were modeled by setting Ef1 = 0 and vf2 

vf3 = 0 in eq. 35 assuming loading was in the 11-direction. A value of Y = 1.26(1- ci)/24 

was used for the generation of the Yilmazer M-T void and M-T vacuole predictions while 

a value of Y = (1 ci)/24 was used for the Smith predictions. The interaction multipliers 

were chosen based on the results obtained in Sec. 6.3. 

Figure 5 shows the performance of the F-F and M-T models for the glassfvoid/ 

polyurethane (PU) data. The M-T solution (no interaction) is shown for reference. For 

both the M-T void and M-T vacuole results, a larger drop in modulus is predicted when 

compared to the F-F results (PJ = 0.6). However, at ci < 0.17, all models gave similar 

moduli. The M-T vacuole model gave slightly higher moduli than the M-T void model as 

ci-+ 0 (see Evacl Evoid curve). This was expected since the vacuole stiffness matrix [Cv] was 

partially populated with non-zero values. This behavior was also observed by Mochida in 

Ref. 26. 

The model performance for the glass/void/epoxy data (Fig. 6) showed that asci-+ 0, 

the M-T models predicted higher modulus between 0.45 < ci < 0.5 then lower moduli down 

to ci = 0.12 in comparison to the Farber-Farris solution (PJ = 1). This was not surprising 



P501263.PDF [Page: 34 of 122]

UNCLASSIFIED 
22 

given the 2-phase predictions in Sec. 6.1. The M-T model moduli decreased more rapidly 

than the F-F modulus but the difference in rates of decrease was not as great as that seen 

for the glass/PU data. Again, the M-T vacuole model ·gave a slightly higher moduli than 

the M-T void model as ci-+ 0. 

A comparison of predicted composite Poisson ratio Vc for the glass/void/PU com-

posite is shown in Fig. 7. The F-F predictions gave a slightly concave-down curve asci -rO. 

The M-T solutions on the other hand had a curious concave-up shape. 

The dependency of the Poisson ratio curvature on the matrix Poisson ratio Vm is 

shown in Fig. 8. The solid lines represent the Poisson behavior if the inclusions were 

assumed to be rigid ([Ci] = [oo]). Reference 20 showed that Vc was independent of the 

inclusion Poisson ratio for this case. For a matrix Poisson ratio Vm = 0.2, it can be seen 

that the composite Poisson ratio Vc equalled 0.2 for all ci. Budiansky (Ref. 37) observed 

the same behavior in his analysis of elastic moduli of heterogeneous materials. He found 

that at ci = 0.2, his shear and bulk modulus equations became decoupled. Calculations for 

Vm > 0.2 show that with rigid inclusions, Vc has a concave-up shape. For Vm < 0.2, Vc has a 

concave-down shape. It appears, then, for analyses which use a discrete averaging process 

such as that given by eqs. 24 and 30 or employed in Refs. 18, 20 or 37, the predicted Vc 

will show this kind of behavior. 

The dashed lines in Fig. 8 show the Vc behavior using glass/PU property data. Vm 

was varied between 0.1 to 0.3 while Vi = 0.16. Particle interaction was accounted for and 

Y = 1.26(1- ci)/24. The deviation from the 3-phase rigid inclusion prediction at Vm 0.2 

is caused by Vi :f. 0.2. For values of Vm :f. 0.2, the effects of [P] and Ed Em come into play. 

Since Vm = 0.499 for PU, it is evident why a concave-up curve is predicted in Fig. 7. 
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Going back to Fig. 7, the M-T solution gives a higher prediction of Vc compared with 

the M-T void and M-T vacuole solutions. In the case of the M-T void results, Vc eventually 

converges to the M-T solution since ci-+ 0. The M-T vacuole results demonstrate the 

restraining power of the vf2 = vf3 = 0 assumption. Numerical trials for glass/void/epoxy 

showed the same trends. 

7.0 PREDICTION OF MECHANICAL BEHAVIOR 

The general characteristics of the critical strain equation ( eq. 40) will first be 

examined using the M-T void model. Stress-strain behavior for different volume fractions 

of inclusions will be shown to illustrate how the model functions. Void volume fraction is 

calculated from cv = c~ ci where c~ is the initial inclusion volume fraction. 

To examine the consequences of using the critical strain equation based on the 

M-T void or M-T vacuole models, mechanical behavior predictions will be compared with 

literature data for two types of model particulate composites. The first composite is a 

glass bead/polyurethane system which was studied by Yilmazer and Farris (Ref. 30). The 

second composite is a glass bead/polyethylene system which was studied previously by the 

author (Ref. 14). Predictions using the Farber-Farris model will be made to highlight the 

differences between it and the M-T models. The FORTRAN program used for generating 

the M-T void and vacuole data may be found in Appendix B. 
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The results shown in Figs. 9 and 10 were generated using the constituent properties 

from Ref. 29 (see Table I). Y = (1 ci)/24 was used (Sec. 6.1) along with an adhesion 

energy of 5 Jjm2 (Ref. 13). Particle diameter size was set at 50 J-Lm and the log standard 

deviation equalled 0.2. 

Figure 9 shows how stress-strain behavior changes with initial inclusion volume frac-

tion. As initial volume fraction increased, composite modulus also increased. This trend 

has been well documented in the literature (Refs. 38, 39 and 40). Examining the volume 

fraction curves, as long as initial volume fraction remained constant, linear elastic behavior 

was predicted. Maximum stress was determined by the composite modulus and the initial 

critical strain values. Once inclusions started to debond, volume fraction decreased and 

nonlinear behavior was observed. Stress increased or decreased depending on the initial 

volume of inclusions. Below inclusion volume fractions of 0.05, linear behavior was again 

predicted. The modulus at this point was determined by the volume of voids in the compos-

ite. The current model does not contain a failure criterion so only a portion of the predicted 

stress-strain curve would be seen in experiments. 

The relationship between volume fraction and probability of inclusion survival with 

strain is shown in Fig. 10. Probability of survival represents the number of well-bonded 

inclusions remaining in the composite. It can also be thought of as a cumulative size 

distribution curve where the lefthand side of the figure represents large particle diameters 

and the righthand side representing small diameters. For the log standard deviation studied, 

10% of the total number of particles made up 50% of the inclusion· volume. When the 

inclusion volume fell to < 0.05, approximately 50% of the total number of particles remained. 
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This shows that the larger particles controlled the type of nonlinear behavior predicted and 

that the smaller particles were almost inconsequential. 

7.2 Glass Bead/Polyurethane Composite 

In Ref. 30, the authors fabricated glass bead/polyurethane composites with in-

elusion volume fractions ranging from c~ 0.0 to c~ 0.5 in steps of 0.1. One set of 

composites contained untreated glass beads while a second set used glass beads treated 

with a silane coupling agent. Six out of the twelve composite combinations studied in Ref. 

30 have been chosen to demonstrate the performance of the models. In Ref. 13, the authors 

used void properties and adjusted the matrix modulus and the adhesion energy to obtain 

agreement between the experimental and predicted values. In this section, only adhesion 

energy was considered an adjustable parameter. Its value was increased until the exper-

imentally measured maximum stress was obtained (Ref. 14 ). The matrix modulus was 

considered a fixed quantity since it was measured. Void properties were set to zero. A value 

of Y = 1.26(1- ci)/24 was used in the M-T models since this gave the correct modulus 

predictions in Sec. 6.3. 

Figure 11 shows a comparison of the experimental data for a composite containing 

c~ = 0.30 of untreated beads with the F-F model and the M-T void and M-T vacuole 

models. The parameters used for these predictions may be found in Table II. It can be seen 

that the M-T vacuole model gave the best prediction for composite behavior. The M-T 

void model predicted a greater reduction in modulus and as a consequence lower stress at 

a strain > 0.25. The F-F model predicted a yield point and a much lower stress at a strain 

> 0.20. 
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For a composite containing c~ = 0.40 of untreated beads (Fig. 12), the F-F model 

predicted the experimental data better. Both the M-T void and M-T vacuole models over-

predicted the composite stress after the yield point. The behavior of the composite con-

taining c~ = 0.50 of untreated beads (Fig. 13) was more accurately predicted by the M-T 

models than the F-F model. It can be seen that the initial modulus predicted by the M-T 

models matched the experimental data very well. The predictions after strain > 0.05 cannot 

be confirmed because the specimen ruptured at that point. 

Comparison between the experimental data for the composite containing c~ equal to 

0.30, 0.40 and 0.50 of treated beads and the models shows that the M-T vacuole model gave 

the closest predictions (see Figs. 14, 15 and 16). Like the untreated bead composites theM­

T void model underpredicted composite stresses slightly. The composite containing c~ = 0.4 

treated beads did not have the large drop in stress like its equivalent with untreated beads. 

As seen from the previous figures, the M-T models tended to predict this type of behavior. 

The F-F model predicted a yield point and a large drop in stresses afterwards. Examination 

of Table II shows that larger adhesion energies Gc were needed in the models for treated 

beads to account for the improved adhesion due to the silane treatment. These energy 

values provide a means for evaluating the adhesion characteristics between the constituents 

without having to measure it experimentally. 

7.3 Glass Bead/Polyethylene Composite 

In Ref. 14, the author fabricated glass bead/polyethylene composites with approx-

imate inclusion volume fractions of c~ = 0.2 and c~ = 0.5. As with Ref. 30, one set of 

composites contained untreated glass beads while the other set used glass beads treated 
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with a silane coupling agent. The six composite combinations studied in Ref. 14 will be 

used to demonstrate the performance of the models. The matrix modulus was considered 

a fixed quantity for the M-T models while the interaction factor multiplier, Ym, had to be 

considered an adjustable parameter for this material system. This will be discussed shortly. 

Void properties were set to zero. Adhesion energy was considered an adjustable param-

eter for all models. It was increased until experimentally measured maximum stress was 

obtained. 

Figure 17 shows a comparison of the experimental data for a composite containing 

c~ = 0.19 of 31 f.Lm untreated beads (designated U2520) with the F-F, M-T void and M-T 

vacuole models. The F-F model predicted a yield point and then a drop in stress. The 

M-T models provided better predictions when Ym = 0.6 was used. In comparison with 

Ym = 1.26 for glass/polyurethane composites (Sec. 6.3) where it was suggested that the 

value of 1.26 indicated the presence of additional reinforcement, the value of 0.6 supports 

the idea that there was an absence of additional reinforcement due to the poor adhesion 

between particle and matrix. It can be seen that the M-T vacuole model predicted the 

behavior of the composite better for strains > 0.025. 

The results for the composite containing c~ = 0.22 of 31 f-Lm treated beads (T2520) 

shows that all models had difficulty with the nonlinearity at the beginning of the stress-

strain curve (Fig. 18). This was caused by the use of a linear elastic matrix modulus in the 

models. 

The results for T2520 suggest that the nonlinear effects due to matrix nonlinearity 

were as significant as the nonlinear effects due to inclusion debonding. Two factors allowed 

this to happen. First, T2520 contained a low volume fraction of inclusions. This permitted 



P501263.PDF [Page: 40 of 122]

UNCLASSIFIED 
28 

matrix properties to have a greater influence on overall behavior. Second, the actual stress-

strain curve for polyethylene has a concave-down shape up to its maximum stress. This 

meant that the actual modulus was high initially and then dropped off as maximum stress 

was reached. The predicted values were based on an average matrix modulus which was 

defined as the secant modulus measured at 90% of maximum stress (Ref. 14). Thus, 

composite stresses were underpredicted initially because an average linear elastic matrix 

modulus was used. 

The M-T models for T2520 used a Ym == 2.5. Following the reasoning given pre-

viously, this indicates that the silane coupling agent was causing additional reinforcement 

effects to be seen. The difference in Y m for the U2520 and T2520 predictions is reflected 

in the differences found in their overall stress-strain behavior. T2520 has a larger ini-

tial modulus and a higher maximum stress than U2520. The untreated and treated glass 

bead/polyurethane composites (c~ = 0.40) have similar stress-strain behavior in spite of 

the fact that one has a surface treatment. This explains why the glass bead/polyethylene 

composites need an adjustable Ym while the glass bead/polyurethane composites do not. 

Figure 19 for a composite containing c~ = 0.48 of 31 JLm untreated beads (U2550) 

shows that all models could reproduce the experimental data. However, for the F-F model 

to approximate the experimental behavior, the measured matrix modulus of 187 MPa had 

to be reduced to 90 MPa. The justification given in Ref. 14 for this reduction was that 

poor adhesion resulted in loss of reinforcement and lack of strain in the matrix. As with 

the U2520 composite, the M-T models accounted for this behavior through modification of 

Ym. To reproduce the experimental data Ym = 0.8 was used. As before, this value indicates 

that there was an absence of additional reinforcement due to poor adhesion. 
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A comparison of the results for a composite containing c~ = 0.49 of 31 J.Lm treated 

beads (T2550) in Fig. 20 shows that the M-T models gave the best prediction of mechanical 

behavior. Ym = 2.5 was used. As with the T2520 M-T results, this value indicated that 

additional reinforcement was being produced by the coupling agent. Nonlinearity due to 

actual matrix behavior was less evident for this composite because there is less matrix 

volume. This allowed nonlinearity due to inclusion debonding to dominate. The F-F model 

predicted a yield point and a decline in stress after a strain of 0.075. 

Figures 21 and 22 shows a comparison of results for composites containing c~ = 0.19 

and c~ = 0.49 of 130J.Lm treated beads respectively. The c~ = 0.19 T1020 composite (Fig. 

21) behaves much like the T2520 composite (Fig. 17). Again the M-T and F-F models 

underpredict the stresses at strains below 0.035. The reasons given during the discussion 

of the T2520 results would apply to the T1020 results as well. At strains > 0.035, it can 

be seen that the M-T vacuole results follow more closely the experimental results. For the 

c~ = 0.49 T1050 composite results (Fig. 22), the M-T predictions follow the experimental 

data better. The value of Ym = 2.5 indicated that additional reinforcement was present. An 

examination of Table III shows that larger adhesion energies were required in the models 

to reflect the improved adhesion due to the silane treated beads. Adhesion energies could 

not be verified because they were not measured. 

8.0 SUMMARY 

The theoretical framework for calculating composite modulus using an improved 

Mori-Tanaka method has been presented. A comparison of 2-phase composite results with 

experimental data showed that the M-T solution with no particle interaction effects un-
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derpredicted the measured moduli. The inclusion of particle interaction effects through a 

correction matrix [rr] improved predictions but had some undesirable side effects. These 

side affects were eliminated by making the interaction factor Y a function of the inclusion 

volume fraction. 

A comparison with 3-phase modulus data obtained from the literature showed there 

was good agreement between the 3-phase M-T model and the Farber-Farris model for low 

initial inclusion volume fractions. At higher initial inclusion volume fractions, predictions 

for a hypothetical3-phase composite showed that the 3-phase M-T model predicted a faster 

decrease in modulus than the F-F model. Moduli solutions for composites containing vac-

uoles showed that a slightly higher modulus could be expected when compared to composites 

containing voids. 

Examination of the Poisson ratio results for 3-phase composites showed that a non-

monotonic behavior was predicted as inclusion volume fraction was increased. This behavior 

was restricted to modulus prediction models which were derived using a discrete averaging 

process to account for the reinforcement of additional inclusions. 

Based on the improved M-T method, new micromechanical models for the predic-

tion of particulate composite mechanical behavior were developed. Comparisons between 

the M-T void and M-T vacuole models and the experimental data for glass/polyurethane 

and glass/polyethylene composites showed that the M-T vacuole model gave the best re-

suits for inclusion volume fractions ranging from c~ = 0.2 to c~ = 0.4. This suggests vacuole 

formation rather than void formation is more representative of the actual debonding pro­

cess. The composites containing c~ = 0.5 particles showed that the M-T models generally 

performed better than the F-F model. The M-T models either predicted the initial modulus 
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or the stress after the knee of the stress-strain curve more closely. 

The introduction of an interaction factor multiplier Ym in theM-T models provided 

a means of evaluating the degree of particle interaction in the glass/polyethylene composites. 

A low Ym suggested that there was little interaction due to poor adhesion between the 

phases. A high Ym suggested there was greater interaction due to improved adhesion. 

The only case where the F-F model performed better than the M-T models was 

in a glass/polyurethane composite which contained c~ = 0.4 of untreated beads. The 

experimental data showed a yield point and a large drop in stress afterwards. Since the F-F 

predictions tend to have this shape, the F-F model gave good results for this situation. The 

M-T models tended to show a much more gradual decline in stress. From the composite 

systems studied, the gradual decline behavior appeared to be more common. 

The F-F and M-T models had trouble predicting the mechanical behavior of a 

glass/polyethylene composite containing c~ = 0.22 of treated glass beads. The discrepancy 

between theoretical and experimental results was attributed to the use of linear elastic 

matrix properties. This shortcoming indicates that improvements to M-T void and M-T 

vacuole predictions can be made by reformulation of the models to include nonlinear matrix 

behavior. 
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TABLE I 

Elastic properties of constituent phases for particulate composites 

Ref. Matrix Inclusion Go Gi Vo 1/i 

(MPa) (GPa) 

14 polyethylene glass bead 187 30.2 0.34 0.16 

25 cobalt tungsten-carbide 79000 293 0.31 0.194 

29 epoxy glass bead 1080 30.9 0.394 0.23 

30 polyurethane glass bead 1.4 30.2 0.499 0.16 

35 epoxy sand 725 29.4 0.4 0.25 

Go, matrix shear modulus, G;, inclusion shear modulus, Vo, matrix Poisson ratio, v;, inclusion Poisson 

ratio. 
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TABLE II 

Model input parameters for glass bead/polyurethane composites 

Surface Treatment Untreated Untreated Untreated Treated Treated 
Volume Fraction 0.3 0.4 0.5 0.3 0.4 
A vg. rad. (f.Lm) 12.5 12.5 12.5 12.5 12.5 
Log std. dev. 0.228 0.228 0.228 0.228 0.228 
ci 

0 0.30 0.40 0.50 0.30 0.40 
cv 

0 0.0 0.0 0.0 0.0 0.0 
Gi (GPa) 30.17 30.17 30.17 30.17 30.17 
Go (MPa) 1.40 1.40 1.40 1.40 1.40 
Vi 0.16 0.16 0.16 0.16 0.16 
Vo 0.499 0.499 0.499 0.499 0.499 
pa. 0.7 0.7 0.7 0.7 0.7 yt 1.26 1.26 1.26 1.26 1.26 m 
Gc:F-Fc (J/m2 ) 8 6 6 12 8 
Gc:M-Td void (Jjm2) 12 8 13 16 14 
Gc:M-Te vacuole (J/m2) 12 8 14 17 14 

a Maximum packing fraction used with F-F model. 

b Interaction factor multiplier. Found by numerical trial and error. 

c Adhesion energy used with F-F model. Found by numerical trial and error. 

d Adhesion energy used with M-T void model. Found by numerical trial and error. 
e Adhesion energy used with M-T vacuole model. Found by numerical trial and error. 

Treated 
0.5 
12.5 

0.228 
0.50 
0.0 

30.17 
1.40 
0.16 
0.499 

0.7 
1.26 
10 
21 
24 

c:,, initial inclusion volume fraction, c~, initial void or vacuole volume fraction, G;, inclusion shear modulus, 
Go, matrix shear tp.odulus, v;, inclusion Poisson ratio, vo, matrix Poisson ratio. 
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TABLE III 

Model input parameters for glass bead/polyethylene composites 

Surface Treatment Untreated Untreated Treated Treated Treated 

Composite No. U2520 U2550 T2520 T2550 T1020 

A vg .. rad. (pm) 15.5 15.5 15.5 15.5 65 

Log std. dev. 0.167 0.167 0.167 0.167 0.0374 

ci 
0 

0.19 0.48 0.22 0.49 0.19 

cv 
0 

0.03 0.01 0.0 0.0 0.0 

Gi (GPa) 30 30 30 30 30 

G 0 :F-F (MPa) 187 90 187 187 187 

Go:M-T (MPa) 187 187 187 187 187 

Vi 0.16 0.16 0.16 0.16 0.16 

Vo 0.34 0.34 0.34 0.34 0.34 

P"' 0.6 0.6 0.6 0.6 0.6 

:v.t 0.6 0.8 2.5 2.5 2.5 
m 

Gc:F-Fc (J/m2) 5 2.5 20 6 35 

Gc:M-Td void (Jjm2 ) 4.5 2 19 12 35 

Gc:M-Te vacuole (Jjm2) 4 1.8 17 11 33 

a Maximum packing fraction used with F-F model. 

b Interaction factor multiplier. Found by numerical trial and error. 

c Adhesion energy used with F-F model. Found by numerical trial and error. 

d Adhesion energy used with M-T void model. Found by numerical trial and error. 

e Adhesion energy used with M-T vacuole model. Found by numerical trial and error. 

Treated 
T1050 

65 
0.0374 

0.49 
0.0 
30 
187 
187 
0.16 
0.34 
0.6 
2.5 
6.0 
10 
10 

c~, initial inclusion volume fraction, c~, initial void or vacuole volume fraction, G;, inclusion shear modulus, 

Ga:F-F, matrix shear modulus used with F-F model, Go:M-T, matrix shear modulus used with M-T models, 

v;, inclusion Poisson ratio, V0 , matrix Poisson ratio. 
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FIGURE 12- Mechanical behavior predictions for composite containing c~ = 0.4 un­

treated glass beads in polyurethane (Ref. 30 ). C11 c~- ci. Interaction 

between bonded particles taken into account. 
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FIGURE 13 Mechanical behavior predictions for composite containing c~ = 0.5 un­
treated glass beads in polyurethane (Ref. 30). cv = c~-ci. Interaction 
between bonded particles taken into account. 
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FIGURE 14 Mechanical behavior predictions for composite containing c~ = 0.3 
treated glass beads in polyurethane (Ref. 30). cv = c~-ci. Interaction 
between bonded particles taken into account. 
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FIGURE 15 Mechanical behavior predictions for composite containing c~ = 0.4 
treated glass beads in polyurethane (Ref. 30). cv c~- ci. Interaction 
between bonded particles taken into account. 
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FIGURE 16 Mechanical behavior predictions for composite containing c~ = 0.5 
treated glass beads in polyurethane (Ref. 30). cv = c~- ci. Interaction 

between bonded particles taken into account. 
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FIGURE 17 Mechanical behavior predictions for composite containing c~ 0.19 
31 f.Lill untreated glass beads in polyethylene (Ref. 14). cv = c~ ci. 
Interaction between bonded particles taken into account. 
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FIGURE 18 Mechanical behavior predictions for composite containing c~ = 0.22 
31 J.Lm treated glass beads in polyethylene (Ref. 14). cv = c~ ci. 
Interaction between bonded particles taken into account. 
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FIGURE 19- Mechanical behavior predictions for composite containing c~ = 0.48 
31 J.lffi untreated glass beads in polyethylene (Ref. 14). cv = c~- ci. 

Interaction between bonded particles taken into account. 
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FIGURE 20 - Mechanical behavior predictions for composite containing c~ = 0.49 

31 fLill treated glass beads in polyethylene (Ref. 14). cv = c~ - ci. 

Interaction between bonded particles taken into account. 
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FIGURE 21- Mechanical behavior predictions for composite containing c~ = 0.19 
130 11m treated glass beads in polyethylene (Ref. 14). cv = c~ - ci. 
Interaction between bonded particles taken into account. 
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FIGURE 22- Mechanical behavior predictions for composite containing c~ = 0.49 
130 J.Lm treated glass beads in polyethylene (Ref. 14 ). cv = c~ - ci. 
Interaction between bonded particles taken into account. 
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APPENDIX A 

Mathematica Listing for 3-Phase Modulus Model 

Program Listing 

(* Three-phase Mori-Tanaka model with particle interaction effects \ 

and void or vacuole formulation *) 

(* ex - inclusion volume fraction, \ 

cy - void or vacuole volume fraction, \ 

jucor- apply ju correction (l=yes), \ 

voidmag - apply correction to voids (l=yes) *) 

cx=0.30119; cy=0.5-cx; jucor=l; voidmag=O 

(* particle interaction function \ 

ygr - inclusion interaction function, \ 

ygs - void or vacuole interaction function *) 

ygr=1.26*(1-cx)/24; ygs=(l)/24 

(* material constants for comparison and inclusion materials *) 

(* phases in terms of tensile modulus and Poisson's ratio *) 

(* em - matrix tensile modulus, \ 

v - matrix Poisson ratio, \ 

emr - inclusion tensile modulus, \ 
vr - inclusion Poisson ratio, \ 

ems - void or vacuole tensile modulus, \ 
vs - void or vacuole Poisson ratio, \ 

k -matrix bulk modulus, \ 

u - matrix shear modulus, \ 

es_ij - vacuole tensile modulus in ij-direction, \ 
vs_ij - vacuole Poisson ratio in ij-direction *) 

(* Smith glass bead/epoxy properties *) 

(* em=3.01 ; v=0.394; \ 
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emr='76 ; vr=0.23; 
ems=O ; vs=0.23; 

k = ·em/(3*(1-2*v)); 

u = ·em/(2*(1+v)); 
kr ., emr/(3*(1-2*vr)); 

ur = emr/(2*(1+vr)); 

ks = ems/(3*(1-2*vs)); 

us = ems/(2*(1+vs)); 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

UNCLASSIFIED 
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es11:=0.0*ems; es22=es33=1.0*ems; \ 

vs12=vs13=0; \ 
vs21=vs31=vs23=vs32=vs *) 

(* Ravichandran #625 *) 

( * e:m=207 ; v=O . 31 ; \ 
emr=700 ; vr=0.194; \ 

ems=O ; vs=0.194; \ 
k = em/(3*(1-2*v)); \ 
u = em/(2*(1+v)); \ 
kr = emr/(3*(1-2*vr)); \ 
ur = emr/(2*(1+vr)); \ 
ks = ems/(3*(1-2*vs)); \ 
us = ems/(2*(1+vs)); \ 
es11:==1.0*ems; es22=es33=1.0*ems; \ 
vs 12:=vs 13=0; \ 
vs21=vs31=vs23=vs32=vs *) 

(* Yilmazer #351 *) 
em=4.2 ; v=0.499; 

emr=70000 ; vr=0.16; 

ems=OOOO ; vs=0.16; 

k = em/(3*(1-2*v)); 

\ 
\ 

\ 
u = em/(2*(1+v)); \ 

kr = emr/(3*(1-2*vr)); \ 
ur = emr/(2*(1+vr)); \ 

ks = ems/(3*(1-2*vs)); \ 

\ 

us= ems/(2*(1+vs)); \ 

es11=0.0*ems; es22=es33=1.0*ems; \ 
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vs12=vs13=0; \ 

vs21=vs31=vs23=vs32=vs 

UNCLASSIFIED 
A.3 

(* interaction parameters for inclusions *) 

alphar = 2*(5*v-1)+10*(1-v)*(k/(kr-k)-u/(ur-u)) 

betar = 2*(4-5*v)+15*(1-v)*(u/(ur-u)) 

zetair = 12*v*(13-14*v)-(96*alphar/(3*alphar+2*betar))*(1-2*v)*(1+v) 

zeta2r = 6*(25-34*v+22*v-2)-(36*alphar/(3*alphar+2*betar))*(1-2*v)*(1+v) 
magr = ((5/4)/betar-2)*ygr 

(* interaction parameters for voids *) 

alphas = 2*(5*v-1)+10*(1-v)*(k/(ks-k)-u/(us-u)) 

betas = 2*(4-5*v)+15*(1-v)*(U/(us-u)) 

zeta1s = 12*v*(13-14*v)-(96*alphas/(3*alphas+2*betas))*(1-2*V)*(1+v) 

zeta2s = 6*(25-34*v+22*v-2)-(36*alphas/(3*alphas+2*betas))*(1-2*v)*(1+v) 

mags = ((5/4)/betas-2)*ygs 

(* Eshelby's transformation factors for spherical particles *) 

s1 = S*v-1 

s2 = 4-5*v 
sdet = 15*(1-v) 

(* comparison or matrix material stiffness matrix *) 

c1111 = k+(4/3)*u; c1122 = k-(2/3)*u; c1133 = c1122 
c2211 = c1122 
c3311 = c1122 

c2222 "" c1111 
c3322 = c1122 

c2233 = c1122 
c3333 = c1111 

cO "" {{c1111,c1122,c1133},{c2211,c2222,c2233},{c3311,c3322,c3333}} 

(* inclusion material stiffness matrix *) 

cr1111 = kr+(4/3)*ur; cr1122 = kr-(2/3)*ur; cr1133 = cr1122 
cr2211 = cr1122 cr2222 = cr1111 cr2233 = cr1122 

cr3311 = cr1122 cr3322 = cr1122 cr3333 = cr1111 

cr = {{cr1111,cr1122,cr1133},{cr2211,cr2222,cr2233},{cr3311,cr3322,cr333~}} 

(* void or vacuole material stiffness matrix *) 
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cadet = 1-vs12*vs21-vs13*vs31-vs23*vs32-vs12*vs23*vs31-vs13*vs21*vs32 

cs11i1 = es11(1-vs23*vs32) 

cs1122 • es11(vs21+vs23*vs31) 

cs1133 = es11(vs31+vs21*vs32) 

cs2211 = es22(vs12+vs13*vs32) 

cs2222 = es22(1-vs13*vs31) 

cs2233 = es22(vs32+vs12*vs31) 

cs3311 = es33(vs13+vs12*vs23) 

cs3322 = es33(vs23+vs13*vs21) 

cs3333 = es33(1-vs12*vs21) 

cs = (1/csdet)*{{cs1111,cs1122,cs1133}, \ 

{cs2211,cs2222,cs2233}, \ 

{cs3311,cs3322,cs3333}} 

(* EBhelby transformation tensor for spherical particles*) 

s1111 = s1+2*s2; s1122 = s1 s1133 = s1122 

s2211 = s1122 s2222 = s1111 s2233 = s1122 

s331:l = s1122 s3322 = s1122 s3333 = s1111 

s = (1/sdet)*{{s1111,s1122,s1133}, \ 

{s2211,s2222,s2233}, \ 

{s3311,s3322,s3333}} 

(* correction factor matrix for inclusions *) 

cwr11 = zeta1r+2*zeta2r cwr12 = zeta1r 

cwr21 = cwr12 cwr22 = cwr11 

cwr3:l = cwr12 cwr32 = cwr12 

cwr :: { {cwr11, cwr12, cwr13}, \ 

{cwr21,cwr22,cwr23}, \ 

{cwr31,cwr32,cwr33}} 

(* ct:>rrection factor matrix for voids *) 

cws11 = zeta1s+2*zeta2s cws12 = zeta1s 

cws2t = cws12 

cws3:1 = cws12 

cws22 = cws11 

cws32 = cws12 

cwr13 = cwr12 

cwr23 = cwr12 

cwr33 = cwr11 

cws13 = cws12 

cws23 = cws12 

cws33 == cws11 
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cws = {{cws11,cws12,cws13}, \ 
{cws21,cws22,cws23}, \ 

{cws31,cws32,cws33}} 

(* Identity matrix *) 
i = IdentityMatrix[3] 

(* A-matrices *) 

ar = Inverse[cr-cO].cO 
as= Inverse[cs-cO].cO 

UN CLASSIFIED 
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(* complete correction matrix for inclusions and voids *) 

If[jucor>O,lambdar=i+magr*cx*cwr,lambdar=i] 

If[voidmag>O,lambdas=i+mags*cy*cws,lambdas=i] 

(* calculation of average stiffness coefficients *) 

f1 = Inverse[s+ar] 

f2 = Inverse[s+as] 
f3 = Inverse[cx*(i-lambdar-s)+s+ar+cy*(i-lambdas-s).f2.(s+ar)] 

f4 = Inverse[cy*(i-lambdas-s)+s+as+cx*(i-lambdar-s).f1.(s+as)] 
fcavg = cO.(i+cx*lambdar.f3+cy*lambdas.f4) 

femav = fcavg[[1,1]]-(2*fcavg[[1,2]]*fcavg[[2,1]])/(fcavg[[2,2]]+fcavg[[2,3]]) 

fvav = fcavg[[2,1]]/(fcavg[[2,2]]+fcavg[[2,3]]) 

Print["cx= ",ex]; Print["cy= ",cy]; \ 

Print["ju corrc= ",jucor] ;Print["void mag= ",voidmag]; \ 

Print["f eavg= 11 ,femav]; Print["f vavg= ",fvav] 

(* use for generation of modulus and Poisson ratio vs inclusion Vf *) 
(* fe = N[Table[femav,{cx,0,0.6,0.01}],4] \ 

fv = N[Table[fvav,{cx,0,0.6,0.01}],4] *) 
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APPENDIX B 

FORTRAN Listing for Micromechanical Model 

Program Listing 

C==== main program 

C calculates particle size histogram with corresponding filler 

C volume fraction. uses Z-decrements for particle size 

C determination 

C user enters the following information: 

C number of points desired in stress-strain curve 

C number of particle distributions 

C avg radius and std dev of each distribution 

C volume fraction of filler and voids of each distribution 

C matrix and filler shear modulus, poisson ratio 

C void shear and bulk moduli 

C sample volume, fraction debond, w-type, m-type 

C adhesion energy and applied pressure 

C information may be entered using keyboard or by input data file. 

C three options for printing out intermediate results are available: 

C if values for no pts desired in stress-strain curve and number 

C of particle distributions are negative, data files GAUSS, 

C HISTO, DEBUG and STRESS are written. 

C if value for no pts desired in stress-strain curve is negative 

C and value for number of particle distributions is positive, 

C data files HISTO, DEBUG and STRESS are written. 

C if input data was entered using data file, the data file STRESS 

C will be renamed to the input data file's name. 

c 
C to compile and link: fl p.for /link graphics.lib. the files 

C MSGRAPH.FDR and GRFDEF.FOR should be in the same directory unless 

C a temporary variable has been set up to point to the location of 

C include files. these files contain graphics routines necessary to 

C plot stress-strain curve on screen. 

c 
C the indexing of the various parameters is organized as follows: 
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C strain - current critical strain 

C stress - current stress calc using previous E,G and crit.strain 

C Pr_surv - current no. of particles remaining 

c E,G - moduli at current Pr_surv 

C Vf,Vv - current filler and void volume fractions 

C dG/dc, dK/dc, dA/dc - current differential quantities 

C the total number of points is NDIST*NPTS+i where the additional 

C point is for zero strain and stress. the first group of debonded 

C particles begins at ICNT=2. 

c 
C added routine to output SQRT(r*dE/dc). de based on total volume 

C instead of Vf+Vm. trapped zero in SQRT calc of crit. strain. 

c 
C implementation of Mori-Tanaka solution extended for 3-phase and 

C particle interaction. constituent material properties 

C designated as follows: 1-inclusion,2-void or vacuole,3-matrix. 

C fraction debond (FDBND) for orthotropic properties in loading 

C direction, multiplier for rad. dist. func. (YMULT), w-type 

C designates use inclusion or void properties in 

C calc of Wv matrix (O=void, 1=inclusion), m-type determines type. of 

C particle interaction used (O=none,i=inclusion, 2=inclusion and 

C void or vacuole), v-type determines isotropic or orthotropic matl, 

C (O=orthotropic,l=isotropic) 

c 
C l'ast revision: 04 MAR 1995 

c 
C set PTMX = NTDIS*GSMX 

c 
REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 

REAL IDENT,K,KCMP,MAG 

INTEGER GSMX,PTMX 

PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 

COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 

COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 

COMMON /DIST/ RADAVG(NTDIS),LOGSTD(NTDIS),VLFRFO(NTDIS), 

* VLFRVO(NTDIS) 
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COMMON /MATRA/ BETA(2),WI(3,3),WV(3,3),IDENT(3,3) 
COMMON /MATRB/ S(3,3),CA(3,3),CB(3,3),CE(3,3),CF(3,3) 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 

COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX), 
* ECMP(PTMX),POISC(PTMX) 

COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 
* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 

* IPDIST(PTMX) 
CHARACTER FILNM*8 

C== initialize variables and arrays by BLOCK DATA !NIT 

c 

c 

c 

CALL INPUT(NDIST,NTOT,VOLSMP,FDBND,YMULT,IKIND,IMORI,IPOIS,GAMM, 

* PRESS,FILNM,IWRT) 

!ABORT = 0.0 
CALL STRSTN(NDIST,NTOT,NPTS,VOLSMP,FDBND,YMULT,IKIND,IMORI,IPOIS, 

* GAMM,PRESS,DILATO,IWRT,IABORT) 

C== write out results and debug data 

c 

c 

c 
c 

CALL STRWRT(NDIST,NPTS,VOLSMP,GAMM,FDBND,YMULT,IKIND,IMORI,IPOIS, 
* PRESS,DILATO,FILNM,IABORT) 

IF (ABS(IWRT).GE.1) CALL DBGWRT(NDIST,NPTS,IABORT) 
IF (ABS(IWRT).GE.1) CALL DBGRAT(NDIST,NPTS,IABORT) 

CALL CRVPLT(NDIST,NPTS,IABORT) 

END 

SUBROUTINE INPUT(NDIST,NTOT,VOLSMP,FDBND,YMULT,IKIND,IMORI,IPOIS, 
* GAMM,PRESS,FILNM,IWRT) 

C==== reads in problem input either by file or keyboard. if data entered 
C through a file, user inputs name only, a file extension of DAT is 

C assumed. the first line in the input file is used for a user 
C heading and is not read in, constituent material properties 
C designated as follows: 1-inclusion,2-void or vacuole,3-matrix 
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C set PTMX • NTDIS*GSMX 
c 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
REAL IDENT,K,KCMP,MAG 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX • 750,NTDIS • 3) 
COMMON /DIST/ RADAVG(NTDIS),LOGSTD(NTDIS),VLFRFO(NTDIS), 

* VLFRVO(NTDIS) 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 
CHARACTER ANS*1,FILNM*8 

WRITE (6,'(/,A)') ' Read data from file? (Y/N)' 
READ (5,'(A1)') ANS 

IF (ANS.EQ.'Y') THEN 
WRITE (6,'(A)') ' File to read? (.INP will be appended)' 
READ (5,'(A8)') FILNM 
OPEN (UNIT=7,FILE=FILNM//' .INP',FORM='FORMATTED',STATUS='OLD') 
READ (7,*) 
READ (7,*) NTOT 
READ (7,*) NDIST 
DO 10 I = 1,ABS(NDIST) 

READ (7,*) RADAVG(I) 
READ (7,*) LOGSTD(I) 
READ (7,*) VLFRFO(I),VLFRVO(I) 

10 CONTINUE 
READ (7,*) VOLSMP 
READ (7,*) FDBND,YMULT,IKIND,IMORI,IPOIS 
READ (7,*) G(3),G(1) 

READ (7,*) POIS(3),POIS(1) 

.READ (7,*) G(2),K(2) 

READ (7,*) GAMM,PRESS 
CLOSE (7) 

ELSE 
WRITE (6,'(/,A,I3,A)') 

* 'no. pts desired in stress-strain curve (<',GSMX,')' 
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c 

READ (5,*) NTDT 

UN CLASSIFIED 
B.5 

WRITE (6,'(A,I1,A)') • no. of particle distributions (<•', 

* NTDIS,')' 

* 

READ (5,*) NDIST 
DO 20 I = 1,ABS(NDIST) 

WRITE (6,'(A,I1,A)') 'for distribution no. ',I, 

' mean radius (micron)' 
READ (5,*) RADAVG(I) 
WRITE (6,'(A)') ' log normal radius std dev' 
READ (5,*) LOGSTD(I) 
WRITE (6,'(A)') • initial volume fraction filler and void' 

READ (5,*) VLFRFO(I),VLFRVO(I) 

20 CONTINUE 
WRITE (6,'(A)') ' sample volume (mm3)' 
READ (5,*) VDLSMP 
WRITE (6,'(A)') ' dbnd frac,rad dist mult,w-typa,m-type,v-type' 
READ (5,*) FDBND,YMULT,IKIND,IMORI,IPDIS 
WRITE (6,'(A)') 'matrix and filler shear modulus (Pa)' 
READ (5,*) G(3),G(1) 
WRITE (6,'(A)') 'matrix and filler Poisson ratio' 
READ (5,*) POIS(3),POIS(1) 
WRITE (6,'(A)') ' void shear and bulk modulus (Pa)' 
READ (5,*) G(2),K(2) 
WRITE (6,'(A)') ' Gc (J/m2) and applied pressure (Pa)' 

READ (5,*) GAMM,PRESS 
FILNM = 'DEFAULT' 

END IF 

C== set write file flag, O=STRWRT, 1=STRWRT,DBGWRT,HSTWRT, 2=all 

IWRT = 0 

c 

IF (NTOT.LT.O.AND.NDIST.LT.O) IWRT = 2 
IF (NTOT.LT.O.AND.NDIST.GT.O) IWRT = 1 
NDIST = ABS(NDIST) 
NTOT = ABS(NTOT) 

RETURN 
END 
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c 
c 

UNCLASSIFIED 
B.6 

SUBROUTINE STRSTN(NDIST,NTOT,NPTS,VOLSMP,FDBND,YMULT,IKIND,IMORI, 

* IPOIS,GAMM,PRESS,DILATO,IWRT,IABORT) 
C=•==: main subroutine which organizes particle size distribution, 
C composite property, critical strain and stress and dilation 
C calculation modules. 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 

C== initialize abort ~lag 
!ABORT = 0 

c 
C== create gaussian distribution of particle size 

WRITE (6,'(/,A)') ' Generating particle distribution' 
CALL GAUSS(NDIST,NTOT,NPTS,IABORT) 

C== write out gaussian cumulative data 
IF (ABS(IWRT).GE.2) CALL GAUWRT(NDIST,NPTS,IABORT) 

c 
C== find size and number of particles to debond 

WRITE (6,'(/,A)') ' Finding particle size and number' 
CALL PARTSZ(NDIST,NPTS,VOLSMP,IABORT) 

C== write out particle size and number histogram 

c 

c 

IF (ABS(IWRT).GE.l) CALL HSTWRT(NDIST,NPTS,IABORT) 

WRITE (6,'(/,A)') • Sorting particle distributions' 
CALL SORTER(NDIST,NPTS,IABORT) 
WRITE (6,'(A)') ' Calculating vol fractions and dA/dc' 
CALL VOLFRC(NDIST,NPTS,VOLSMP,IABORT) 

WRITE (6,'(/,A)') ' Generating stress-strain curve' 
C== calculate initial composite properties 

ICNT = 1 
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c 

CONCI = NETVF(ICNT) 
CONCV = NETVV(ICNT) 

UN CLASSIFIED 
B.7 

CALL MTPRP(CONCI,CONCV,ICNT,FDBND,YMULT,IKIND,IMORI,IPOIS,IABORT) 
IF (IABORT.EQ.O) WRITE (6,'(A,1X,I3,A,I3,A)') 

* 'Calculating point: ',ICNT,'/',NDIST*NPTS+1,' max' 

C== main routine for debonding and stress-strain calculation. 
C offset pointer ICNT by 1 to make room for undebonded state. 

c 

c 

c 
c 

DO 10 ICNT = 2,NDIST*NPTS+1 
CONCI = NETVF(ICNT) 
CONCV = NETVV(ICNT) 
CALL MTPRP(CONCI,CONCV,ICNT,FDBND,YMULT,IKIND,IMORI,IPOIS, 

* IABORT) 
IF (IABORT.EQ.O) WRITE (6,'(A,1X,I3,A,I3,A)') 

* '+Calculating point: ',ICNT,'/',NDIST*NPTS+1,' max' 
CALL CRIT(ICNT,VOLSMP,GAMM,PRESS,IABORT) 
CALL CALVAL(ICNT,PRESS,DILATO,IABORT) 

10 CONTINUE 

RETURN 
END 

SUBROUTINE GAUSS(NDIST,NTOT,NPTS,IABORT) 
C==== Program calculates the cumulative area underneath the 
C gaussian curve between the limits +/- (!END/FACT) in increments 
C of IDELT/FACT. NTOT is used to calculate an appropriate IDELT. 
C since IDELT is rounded down, the exact number of points may be 
C greater. this is reflected in NPTS. 
C Particle radii converted from microns to millimeters. 
C An !END of 3301 gives a cumulative distribution which starts 
C at 0.0005 and ends at 0.9995. This avoids having extremely large 
C particles when the log standard deviation is large. 
c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
INTEGER GSMX,PTMX 
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c 

c 

UNCLASSIFIED 
B.8 

PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
PARAMETER (ISTART = 2,IEND = 3301,FACT = 1000,BEGNPT = 0) 
EXTERNAL FUNC 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DIST/ RADAVG(NTDIS),LOGSTD(NTDIS),VLFRFO(NTDIS), 

* VLFRVO(NTDIS) 

IMAX = GSMX/2 
IDELT = 2*INT((IEND-ISTART)/NTOT) 
NPTS = 2*(INT((IEND-ISTART)/IDELT)+1) 
IF (NPTS.GT.IMAX) THEN 

WRITE (6,'(A)') ' Too many points: SBR GAUSS.' 
WRITE (6,'(A,I4,A)') ' Over max dim by ',NPTS-GSMX,' points.' 
IABORT = 1 
RETURN 

ELSE 
END IF 

DO 20 J = 1,NDIST 
IPTS = 0 
DO 10 I = ISTART,IEND,IDELT 

IPTS = IPTS+1 
ENDPT = (FLOAT(I)-1)/FACT 
Z(NPTS/2+IPTS) = ENDPT 
Z(NPTS/2-IPTS+1) = -ENDPT 

C== calculate upper portion of probability curve 
RADTMP = 10**(ALOG10(RADAVG(J))+ENDPT*LOGSTD(J)) 
RADIUS(J,NPTS/2+IPTS) = RADTMP/1000 
CALL QSIMP(FUNC,BEGNPT,ENDPT,SURF) 
PROB(J,NPTS/2+IPTS) = 0.5+SURF 

C== calculate lower portion of probability curve 

c 

RADTMP = 10**(ALOG10(RADAVG(J))-ENDPT*LOGSTD(J)) 
RADIUS(J,NPTS/2-IPTS+1) = RADTMP/1000 
PROB(J,NPTS/2-IPTS+1) = 0.5-SURF 

10 CONTINUE 
20 CONTINUE 
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c 

RETURN 
END 

FUNCTION FUNC(X) 

UNCLASSIFIED 
B.9 

C==== function used for gaussian curve. called from sbr GAUSS, sbr 

C QSIMP and sbr TRAPZD. 

c 
c 

PI = 3.141592654 
FUNC = (1.0/SQRT(2.0*PI))*EXP(-X**2/2.0) 

RETURN 
END 

SUBROUTINE PARTSZ(NDIST,NPTS,VOLSMP,IABORT) 
C==== sbr finds the total particle volume on a per particle basis. 
C from this the number of particles present in the composite is 
C calculated knowing the initial volume the particles occupy. 
C the incremental probability of the largest particles is 
C calculated using a fraction (PFRAC) of the previous probability 
C increment so that there is a smooth transition from largest to 
C smaller particle sizes in terms of number. 
c 
C set PTMX = GSMX*NTDIS 
c 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
PARAMETER (PI= 3.1415927,PFRAC=0.75) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 
COMMON /DIST/ RADAVG(NTDIS),LOGSTD(NTDIS),VLFRFO(NTDIS), 

* VLFRVO(NTDIS) 

IF (IABORT.EQ.1) RETURN 

C== find total number of particles in given filler volume 
DO 20 IDIST = 1,NDIST 
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VOLTOT = 0 

UNCLASSIFIED 
B.lO 

C find total volume on a per particle basis 

DO 10 IPTS = 1,NPTS 
IF (IPTS.EQ.NPTS) THEN 

VOLPAR(IDIST,IPTS) = PFRAC* 

* (PROB(IDIST,IPTS)-PROB(IDIST,IPTS-1)) 

* *(4.0/3.0)*PI*RADIUS(IDIST,IPTS)**3 

ELSE 
VOLPAR(IDIST,IPTS) = 

* (PROB(IDIST,IPTS+1)-PROB(IDIST,IPTS))* 

* (4.0/3.0)*PI*RADIUS(IDIST,IPTS)**3 

END IF 
VOLTOT = VOLTOT+VOLPAR(IDIST,IPTS) 

10 CONTINUE 
C find total number of particles 

NPARTL(IDIST) = VLFRFO(IDIST)*VOLSMP/VOLTOT 

20 CONTINUE 
c 
C calculate volume taken up by particles of radius r 

DO 30 IDIST = 1,NDIST 

c 

* 

* 

DO 40 IPTS = 1,NPTS 
IF (IPTS.EQ.NPTS) THEN 

NUMPAR(IDIST,IPTS) = NPARTL(IDIST)* 
PFRAC*(PROB(IDIST,IPTS)-PROB(IDIST,IPTS-1)) 

IF (NUMPAR(IDIST,IPTS).LT.1.0) IFLAG = 1 

VOLPAR(IDIST,IPTS) = NUMPAR(IDIST,IPTS)* 
(4.0/3.0)*PI*RADIUS(IDIST,IPTS)**3 

ELSE 
NUMPAR(IDIST,IPTS) = NPARTL(IDIST)* 

* (PROB(IDIST,IPTS+1)-PROB(IDIST,IPTS)) 

* 

IF (NUMPAR(IDIST,IPTS).LT.1.0) IFLAG = 1 

VOLPAR(IDIST,IPTS) = NUMPAR(IDIST,IPTS)* 

(4.0/3.0)*PI*RADIUS(IDIST,IPTS)**3 

END IF 

IF (IFLAG.EQ.1) THEN 
WRITE(6,5000) 
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* 

c 

UNCLASSIFIED 
B.ll 

IDIST,IPTS,RADIUS(IDIST,IPTS),NUMPAR(IDIST,IPTS) 
!FLAG = 0 

ELSE 
END IF 

40 CONTINUE 
30 CONTINUE 
c 
C RETURN 
5000 FORMAT(' Error SBR PARTSZ: IDIST=',I1,' IPTS=',I3,' RAD=',E11.6, 

* 'NUMPAR=',E11.6) 

c 
c 

END 

SUBROUTINE SORTER(NDIST,NPTS,IABORT) 
C==== loads radius, number of particles and total volume of particles 
C of radius r from each distribution in a master array to sort. 
C after sorting radii in ascending order, arrays are flipped 
C according to radius to give descending order. 
c 
C set PTMX = NTDIS*GSMX 
c 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 
* IPDIST(PTMX) 

IF (IABORT.EQ.1) RETURN 

C* load master arrays 
DO 20 I = 1,NDIST 

DO 10 J = 1,NPTS 
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c 

UNCLASSIFIED 
B.12 

SORRAD((I-1)*NPTS+J) = RADIUS(I,J) 
SORPAR((I-1)*NPTS+J) = NUMPAR(I,J) 
SORVLP((I-1)*NPTS+J) = VOLPAR(I,J) 
IPDIST((I-1)*NPTS+J) = I 

10 CONTINUE 
20 CONTINUE 

C* sort master arrays in ascending order 
NTOT = NDIST*NPTS 
CALL SORT3(NTOT,SORRAD,SDRPAR,SORVLP,IPDIST) 

c 
C* sort master arrays in descending order 

c 

c 
c 

DO 30 I = 1, ND.IST*NPTS/2 
ATMP = SORRAD(I) 
SDRRAD(I) = SORRAD(NDIST*NPTS-I+1) 
SORRAD(NDIST*NPTS-I+1) = ATMP 
BTMP = SORPAR(I) 
SORPAR(I) = SORPAR(NDIST*NPTS-I+1) 
SORPAR(NDIST*NPTS-I+1) = BTMP 
CTMP = SORVLP(I) 
SORVLP(I) = SORVLP(NDIST*NPTS-!+1) 
SORVLP(NDIST*NPTS-I+1) = CTMP 
ITMP = IPDIST(I) 
IPDIST(I) = IPDIST(NDIST*NPTS-I+1) 
IPDIST(NDIST*NPTS-!+1) = ITMP 

30 CONTINUE 

RETURN 
END 

SUBROUTINE VOLFRC(NDIST,NPTS,VOLSMP,IABORT) 
C===:= calculates dA/ de, net Vf, net Vv and probili ty of survival for 
C given particle radius. Note: net Vf is based on total sample vol. 
C Prob of surv is based on numbers of particles. 

c 
C set PTMX = NTDIS*GSMX 
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c 

c 

c 

UNCLASSIFIED 
B.l3 

REAL LDGSTD,NPARTL,NUMPAR,NETVF,NETVV 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
PARAMETER (PI = 3.1415927) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 
COMMON /DIST/ RADAVG(NTDIS),LOGSTD(NTDIS),VLFRFO(NTDIS),, 

* VLFRVO(NTDIS) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 

* IPDIST(PTMX) 

IF (IABORT.EQ.1) RETURN 

C== calculate total volume fraction filler and void 

NETVF(1) = 0 

c 

NETVV(1) = 0 
DO 10 I = 1,NDIST 

NETVF(1) = NETVF(1)+VLFRFO(I) 
NETVV(1) = NETVV(1)+VLFRVO(I) 

10 CONTINUE 
PRBSRV(1) = 1.0 

C== calculate net Vf and Vv, dA/dc and Prob surv. array index offset 

C by 1 to leave room for initial undebonded state 

c 
SRVNUM = 0 

c 
C== find total number of particles 

DO 30 ICNT = 1,NDIST 

c 

TLNUMP = TLNUMP + NPARTL(ICNT) 
30 CONTINUE 

DO 20 JCNT = 2;NDIST*NPTS+1 
VLFTOT = VLFTOT - SORVLP(JCNT-1) 
NETVF(JCNT) = NETVF(JCNT-1) - SORVLP(JCNT-1)/VOLSMP 
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c 

c 
c 

UNCLASSIFIED 
B.14 

NETVV(JCNT) = NETVV(JCNT-1) + SORVLP(JCNT-1)/VOLSMP 

SRVNUM = SRVNUM + SORPAR(JCNT-1) 

PRBSRV(JCNT) = (TLNUMP - SRVNUM)/TLNUMP 

DADC(JCNT) = -S.O*VOLSMP/SORRAD(JCNT-1) 
20 CONTINUE 

RETURN 
END 

SUBROUTINE MTPRP(CONCI,CONCV,ICNT,FDBND,YMULT,IKIND,IMORI,IPOIS, 

* !ABORT) 
C•..,==• program for calculating composite modulus based on Mori-Tanaka. 

C FDBND=fraction debond for orthotropic properties in loading 

C direction, IKIND=use inclusion or void properties in calc of 

C Wv matrix, IMORI=type of particle interaction used O=none, 

C 1=inclusion, 2=inclusion and void or vacuole,IPOIS=type of 

C debond properties O=orthotropic,1=isotropic 
c 

c 

c 

c 

REAL IDENT,K,KCMP,MAG 
PARAMETER (GSMX=250,PTMX=750,NTDIS=3) 
COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX),, 

* ECMP(PTMX),POISC(PTMX) 

DIMENSION CAVG(3,3) 

IF(IABORT.EQ.1) RETURN 

IF(ICNT.EQ.1)THEN 
CALL CALCIO(IABORT) 
CALL CALCCV(FDBND,IPOIS,IABORT) 

CALL CMPRPO(IKIND,IMORI,IABORT) 

ELSE 
END IF 

CALL CMPRP(CONCI,CONCV,YMULT,CAVG,IABORT) 

C11(ICNT)=CAVG(1,1) 
C12(ICNT)=CAVG(1,2) 
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c 

c 
c 

C21(ICNT)=CAVG(2,1) 

C22(ICNT)=CAVG(2,2) 

UNCLASSIFIED 
B.15 

C23(ICNT)=CAVG(2,3) 
ECMP(ICNT)=C11(ICNT)-2.0*C12(ICNT)*C21(ICNT)/(C22(ICNT)+C23(ICNT)). 
POISC(ICNT)=C21(ICNT)/(C22(ICNT)+C23(ICNT)) 

RETURN 
END 

SUBROUTINE CRIT(ICNT,VOLSMP,GAMM,PRESS,IABORT) 
C==== calculates critical strain based on current properties because 
C the energy balance requires the input work to equal the energy 
C released by surface creation and the internal anergy stored 
C after debonding has taken place. 
c 

c 

c 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
REAL IDENT,K,KCMP,KTMP,MAG 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
PARAMETER (TOL = 1E-18) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 
COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX), 

* ECMP(PTMX),POISC(PTMX) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 
* IPDIST(PTMX) 

IF (IABORT.EQ.1) RETURN 

CONV = 1.0E+3 

DC = NETVF(ICNT)-NETVF(ICNT-1) 
IF(ABS(DC).LT.TOL) DC= -TOL 
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c 

c 

c 

TC12=C12(ICNT) 
TC21=C21(ICNT) 
TC22=C22(ICNT) 

UNCLASSIFIED 
B.16 

TC23=C23(ICNT) 
DC11=(C11(ICNT)-C11(ICNT-1))/DC 

DC12=(C12(ICNT)-C12(ICNT-1))/DC 
DC21=(C21(ICNT)-C21(ICNT-1))/DC 
DC22=(C22(ICNT)-C22(ICNT-1))/DC 
DC23=(C23(ICNT)-C23(ICNT-1))/DC 

AQUAD = -DC11+2.0*((TC22+TC23)*(TC21*DC12+TC12*DC21)­
* (TC12*TC21*(DC22+DC23)))/(TC22+TC23)**2 

CQUAD = CONV*2*GAMM*DADC(ICNT)/VOLSMP 

IF (AQUAD.GE.O) THEN 
WRITE (6,'(A)') • SBR CRIT: square root term is negative.• 

CRTSTN(ICNT) = CRTSTN(ICNT-1) 

ELSE 
CRTSTN(ICNT) = SQRT(CQUAD/AQUAD) 

END IF 

C== for debugging 

C WRITE(6,'(A,I3)') 'ICNT: ',ICNT 
C WRITE(6,'(A,E13.6,A,E13.6,A,E13.6)' ) 
C * 'DE/DC: ',DCMPE,' GC: ',GAMM,' DA/DC: ',DADC(ICNT) 
C WRITE(6,'(A,E13.6,A,E13.6,A,E13.6)') 
C * 'AQUAD: ',AQUAD,' CQUAD: ',CQUAD,' STN: ',CRTSTN(ICNT-1) 

RETURN 

c 
c 

END 

SUBROUTINE CALVAL(ICNT,PRESS,DILATO,IABORT) 
C===•:o calculates stress and dilatation at critical strain 

C properties used are those before debonding takas place 

c 
REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
REAL IDENT,K,KCMP,KTMP,MAG 
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c 

c 

c 

INTEGER GSMX,PTMX 

UNCLASSIFIED 
B.17 

PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX), 

* ECMP(PTMX),POISC(PTMX) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 
* IPDIST(PTMX) 

IF (IABORT.EQ.1) RETURN 

TC21 = C21(ICNT-1) 
TC22 = C22(ICNT-1) 
TC23 = C23(ICNT-1) 
ETMP = ECMP(ICNT-1) 
IF (ICNT.EQ.2) DILATO = PRESS*O 

. STRESS(ICNT) = ETMP*CRTSTN(ICNT) 
C== change stress values to MPa 

STRESS(ICNT) = STRESS(ICNT)/1.0E6 

c 

c 
c 

DILAT(ICNT) = (1-(2.0*TC21/(TC22+TC23)))*CRTSTN(ICNT)-DILATO 

RETURN 
END 

BLOCK DATA INIT 
C==== initialize all variables and arrays used in program 
C check PTMX if NTDIS or GSMX are changed. 
C PTMX = NTDIS*GSMX 
c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
REAL IDENT,K,KCMP,MAG 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 



P501263.PDF [Page: 96 of 122]

c 

c 

c 
c 

UNCLASSIFIED 
B.18 

COMMON /DIST/ RADAVG(NTDIS),LOGSTD(NTDIS),VLFRFO(NTDIS), 
* VLFRVO(NTDIS) 

COMMON /MATRA/ BETA(2),WI(3,3),WV(3,3),IDENT(3,3) 
COMMON /MATRB/ S(3,3),CA(3,3),CB(3,3),CE(3,3),CF(3,3) 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 
COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX), 

* ECMP(PTMX),POISC(PTMX) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 
* IPDIST(PTMX) 

DATA Z /GSMX*O/ RADIUS /PTMX*O/ FROB /PTMX*O/ 
DATA NUMPAR /PTMX*O/ VOLPAR /PTMX*O/ NETVF /PTMX*O/ NETVV /PTMX*O/ 

* DADC /PTMX*O/ NPARTL /NTDIS*O/ 
DATA RADAVG /NTDIS*O/ LOGSTD /NTDIS*O/ VLFRFO /NTDIS*O/ VLFRVO / 

* NTDIS*O/ 
DATA BETA /2*0/ WI /9*0/ WV /9*0/ IDENT /1,0,0,0,1,0,0,0,1/ 
DATA S /9*0/ CA /9*0/ CB /9*0/ CE /9*0/ CF /9*0/ 
DATA K /3*0/ G /3*0/ E /3*0/ POIS /3*0/ CI /9*0/ CV /9*0/ CO /9*0/ 
DATA C11 /PTMX*O/ C12 /PTMX*O/ C21 /PTMX*O/ C22 /PTMX*O/ 

* C23 /PTMX*O/ ECMP /PTMX*O/ POISC /PTMX*O/ 
DATA CRTSTN /PTMX*O/ STRESS /PTMX*O/ DILAT /PTMX*O/ 

* PRBSRV /PTMX*O/ SORRAD /PTMX*O/ SORPAR /PTMX*O/ SORVLP /PTMX*O/ 
* IPDIST /PTMX*O/ 

END 

SUBROUTINE QSIMP(FUNC,A,B,S) 
C==••= used for integration of gaussian curve in sbr GAUSS. obtained 
C from Numerical Recipes, W.H. Press, Cambridge, 1988. 

c 
EXTERNAL FUNC 
PARAMETER (EPS = 1.E-6,JMAX = 20) 
OST = -1.E30 
OS = -1.E30 
DO 10 J = 1,JMAX 
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c 
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CALL TRAPZD(FUNC,A,B,ST,J) 

S = (4.*ST-OST)/3. 
IF (ABS(S-OS).LT.EPS*ABS(OS)) RETURN 

OS = S 
OST = ST 

10 CONTINUE 
PAUSE 'Too many steps: SBR QSIMP' 

END 

SUBROUTINE TRAPZD(FUNC,A,B,S,N) 

C==== used for integration of gaussian curve in sbr QSIMP which is 
C called from sbr GAUSS. obtained from Numerical Recipes, W.H. 
C Press, Cambridge, 1988. 
c 

c 
c 

EXTERNAL FUNC 
IF (N.EQ.1) THEN 

S = 0.5*(B-A)*(FUNC(A)+FUNC(B)) 
IT = 1 

ELSE 
TNM = IT 
DEL = (B-A)/TNM 
X = A+0.5*DEL 
SUM = 0. 
DO 10 J = 1,IT 

SUM = SUM+FUNC(X) 
X = X+DEL 

10 CONTINUE 
S = 0.5*(S+(B-A)*SUM/TNM) 
IT = 2*IT 

END IF 
RETURN 
END 

SUBROUTINE SORT3(N,RA,RB,RC,IRD) 
C==== sorting routine from Numerical Recipes, W.H. Press, Cambridge, 
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C 1988. sorts in ascending order array RA and moves elements in 
C arrays RB, RC and IRD at the same time. 
c 

DIMENSION RA(N),RB(N),RC(N),IRD(N) 
L = N/2+1 
IR = N 

10 CONTINUE 
IF (L.GT.1) THEN 

L = L-1 
RRA = RA(L) 
RRB = RB(L) 
RRC = RC(L) 
IRRD = IRD(L) 

ELSE 
RRA = RA(IR) 
RRB = RB(IR) 
RRC = RC(IR) 
IRRD = IRD(IR) 
RA(IR) = RA(1) 
RB(IR) = RB(1) 
RC(IR) = RC(1) 
IRD(IR) = IRD(1) 
IR = IR-1 
IF (IR.EQ.1) THEN 

RA(1) = RRA 
RB(1) = RRB 
RC(1) = RRC 
IRD(1) = IRRD 
RETURN 

END IF 
END IF 
I = L 
J = L+L 

20 IF (J.LE;IR) THEN 
IF (J.LT.IR) THEN 

IF (RA(J).LT.RA(J+i)) J = J+1 

END IF 
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IF (RRA.LT.RA(J)) THEN 
RA(I) = RA(J) 

RB(I) = RB(J) 

RC(I) = RC(J) 
IRD(I) = IRD(J) 

I = J 

J = J+J 

ELSE 
J = IR+1 

END IF 

GOTO 20 

END IF 
RA(I) = RRA 
RB(I) = RRB 
RC(I) = RRC 

IRD(I) = IRRD 
GOTO 10 

END 

SUBROUTINE CALCIO(IABORT) 

C==== calculate the property matrix for inclusion and matrix, 
C isotropic relations 
c 

c 

c 

REAL IDENT,K,KCMP,MAG 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 

IF(IABORT.EQ.1) RETURN 

K(1)=(2.0*G(1)*(1+POIS(1)))/(3.0*(1.0-2.0*PDIS(1))) 
E(1)=G(1)*(2.0*(1+POIS(1))) 
K(3)=(2.0*G(3)*(1+POIS(3)))/(3.0*(1.0-2.0*POIS(3))) 
E(3)=G(3)*(2.0*(1+POIS(3))) 
C1=K(1)+(4.0/3.0)*G(1) 
C2=K(1)-(2.0/3.0)*G(1) 
C3=K(3)+(4.0/3.0)*G(3) 
C4=K(3)-(2.0/3.0)*G(3) 
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c 

c 
c 

DO 11 I=1,3 

DO 21 J=1,3 
CI(I,J)=C2 

CO(I,J)=C4 
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IF(I.EQ.J) CI(I,J)=C1 
IF(I.EQ.J) CO(I,J)=C3 

2t CONTINUE 

it CONTINUE 

RETURN 
END 

SUBROUTINE CALCCV(FDBND,IPOIS,IABORT) 
C===== calculate the property matrix for de bonded particle, 

C orthotropic relations, FDBND is debond fraction for vacuole 

C IPOIS determines whether orthotropic or isotropic 

c 

c 

c 

c 

REAL IDENT,K,KCMP,MAG 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 

IF(IABORT.EQ.1) RETURN 

IF(K(2).NE.O.AND.G(2).NE.O) THEN 
POIS(2) = (3.0*K(2)-2.0*G(2))/(2.0*(3.0*K(2)+G(2))) 
E(2) = 9.0*K(2)*G(2)/(3.0*K(2)+G(2)) 

ELSE 
E(2) = 0.0 
POIS(2) = 0.0 

END IF 

PCON=REAL(IPOIS) 
DETM = 1-POIS(2)**2-PCON*2*(POIS(2)**2+POIS(2)**3) 
CV(1,1)=(FDBND*E(2)*(1-POIS(2)**2))/DETM 
CV(1,2)=(FDBND*E(2)*(POIS(2)+POIS(2)**2))/DETM 
CV(1,3)=CV(1,2) 
CV(2,1)=(E(2)*PCON*PDIS(2)*(1+POIS(2)))/DETM 
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c 
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CV(2,2)=(E(2)*(1-PCDN*PDIS(2)**2))/DETM 

CV(2,3)=(E(2)*(POIS(2)+PCDN*PDIS(2)**2))/DETM 
CV(3,1)=CV(2,1) 
CV(3,2)=CV(2,3) 
CV(3,3)=CV(2,2) 

RETURN 
END 

SUBROUTINE CMPRPO(IKIND,IMORI,IABORT) 
C==== calculate constants in composite equation 
c 

c 

c 

c 

c 

REAL IDENT,K,KCMP,MAG 
COMMON /MATRB/ S(3,3),CA(3,3),CB(3,3),CE(3,3),CF(3,3) 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 
DIMENSION CTEMPA(3,3),CTEMPB(3,3) 

IF(IABORT.EQ.1) RETURN 

CALL CALCW(IKIND,IMDRI,IABORT) 
CALL CALCS(IABDRT) 
CALL SUB(CTEMPA,CI,CO) 
CALL INVERT(CTEMPB,CTEMPA,IABORT) 
CALL MULT(CA,CTEMPB,CO) 
CALL SUB(CTEMPA,CV,CO) 
CALL INVERT(CTEMPB,CTEMPA,IABORT) 
CALL MULT(CB,CTEMPB,CO) 
CALL ADD(CE,S,CB) 
CALL ADD(CF,S,CA) 

RETURN 

END 

SUBROUTINE CMPRP(CONCI,CONCV,YMULT,CAVG,IABORT) 
C== calculate composite properties, !TYPE identifies inclusion 

C or void 
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c 

REAL IDENT,K,KCMP,MAG 
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COMMON /MATRA/ BETA(2),WI(3,3),WV(3,3),IDENT(3,3) 
COMMON /MATRB/ S(3,3),CA(3,3),CB(3,3),CE(3,3),CF(3,3) 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 
DIMENSION CC(3,3),CD(3,3),CG(3,3),CH(3,3) 
DIMENSION CTEMPA(3,3),CTEMPB(3,3),CTEMPC(3,3),CAVG(3,3) 

C== calculate phase-dependent components of composite equation 
C calculate first half 
C calculate phase-i components 

!TYPE = 1 
CALL GAMMA(CG,CONCI,ITYPE,YMULT,IABORT) 
CALL SUB(CTEMPA,IDENT,S) 
CALL SUB(CTEMPB,CTEMPA,CG) 
DO 11 !=1,3 

DO 21 J=1,3 
CC(I,J)=CONCI*CTEMPB(I,J) 

21 CONTINUE 
1:l CONTINUE 

C calculate phase-v components 
!TYPE = 2 
CALL GAMMA(CH,CONCV,ITYPE,YMULT,IABORT) 
CALL SUB(CTEMPA,IDENT,S) 
CALL SUB(CTEMPB,CTEMPA,CH) 
DO 31 !=1,3 

DO 41 J=1,3 
CD(I,J)=CONCV*CTEMPB(I,J) 

4:1 CONTINUE 
31 CONTINUE 

CALL INVERT(CTEMPA,CE,IABORT) 
CALL MULT(CTEMPB,CD,CTEMPA) 
CALL MULT(CTEMPA,CTEMPB,CF) 

C combine phase-i and phase-v components 
CALL ADD(CTEMPB,CTEMPA,CA) 
CALL ADD(CTEMPA,CTEMPB,S) 
CALL ADD(CTEMPB,CTEMPA,CC) 
CALL INVERT(CTEMPA,CTEMPB,IABORT) 
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CALL MULT(CTEMPB,CG,CTEMPA) 
DO 51 I=1,3 

DO 61 J=1,3 
CTEMPC(I,J)=CONCI*CTEMPB(I,J) 

61 CONTINUE 
51 CONTINUE 

C calculate second half 
CALL INVERT(CTEMPA,CF,IABORT) 
CALL MULT(CTEMPB,CC,CTEMPA) 
CALL MULT(CTEMPA,CTEMPB,CE) 

C combine phase-i and phase-v components 
CALL ADD(CTEMPB,CTEMPA,CB) 
CALL ADD(CTEMPA,CTEMPB,S) 
CALL ADD(CTEMPB,CTEMPA,CD) 
CALL INVERT(CTEMPA,CTEMPB,IABORT) 
CALL MULT(CTEMPB,CH,CTEMPA) 
DO 71 I=1,3 

DO 81 J=1,3 
CTEMPA(I,J)=CONCV*CTEMPB(I,J) 

81 CONTINUE 
71 CONTINUE 

C= combine all components 

c 

c 
c 

CALL ADD(CTEMPB,CTEMPC,CTEMPA) 
. CALL ADD ( CTEMPA, CTEMPB, I DENT) 

CALL MULT(CAVG,CO,CTEMPA) 

RETURN 
END 

SUBROUTINE CALCW(IKIND,IMORI,IABORT) 
C==== calculate correction matrices WI and WV and BETA for 
C use in sbr GAMMA, IKIND determines inclusion or void for vacuole 
C IMORI determines if correction matrix used, O=none,1=inclusion 
C 2=inclusion and void 
c 

REAL IDENT,K,KCMP,MAG 
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REAL KTEMP,KMAT 
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COMMON /MATRA/ BETA(2),WI(3,3),WV(3,3),IDENT(3,3) 
COMMON /MATRB/ S(3,3),CA(3,3),CB(3,3),CE(3,3),CF(3,3) 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 

IF(IABORT.EQ.1) RETURN 

POISM = POIS(3) 
KMAT = K(3) 
GMAT = G(3) 

KTEMP=K(1) 
GTEMP=G(1) 
DO 11 INCL=1,2 

IF(INCL.EQ.2.AND.IKIND.EQ.O)THEN 
GTEMP=O.O 
KTEMP=O.O 

ELSE 
GTEMP=G(INCL) 
KTEMP=K(INCL) 

END IF 

ALPHA = 2.0*(5.0*POISM-1)+10.0*(1-POISM)* 
* (KMAT/(KTEMP-KMAT)-GMAT/(GTEMP-GMAT)) 

BETA(INCL) = 2.0*(4.0-5.0*POISM)+15.0*(1-POISM)* 
* (GMAT/(GTEMP-GMAT)) 

ZETA1 = 12.0*(13.0*POISM-14.0*POISM**2)-(96.0*ALPHA/ 
* (3.0*ALPHA+2.0*BETA(INCL)))*(1-2.0*POISM)*(1+POISM) 

ZETA2 = 6.0*(25.0-34.0*POISM+22.0*POISM**2)-(36.0*ALPHA/ 
* (3.0*ALPHA+2.0*BETA(INCL)))*(1-2.0*POISM)*(1+POISM) 

DO 21 !=1,3 
DO 31 J=1,3 

IF(INCL.EQ.1.AND.IMORI.NE.O)THEN 
WI(I,J)=ZETA1 
IF(I.EQ.J) WI(I,J)=ZETA1+2*ZETA2 

ELSEIF(INCL.EQ.l.AND.IMORI.EQ.O)THEN 
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WI(I,J)=O.O 

ELSEIF(INCL.EQ.2.AND.IMORI.EQ.2)THEN 
WV(I,J)=ZETA1 

IF(I.EQ.J) WV(I,J)=ZETA1+2*ZETA2 
ELSE 

WV(I,J)=O.O 
END IF 

31 CONTINUE 
21 CONTINUE 
11 CONTINUE 

RETURN 
END 

SUBROUTINE CALCS(IABORT) 
C==== calculate Eshelby matrices SI and SV 

c 

c 

c 

c 

c 

COMMON /MATRB/ S(3,3),CA(3,3),CB(3,3),CE(3,3),CF(3,3) 
COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 

IF(IABORT.EQ.1) RETURN 

POISM = POIS(3) 
SDET = 15.0*(1-POISM) 

S1 = S.O*POISM-1 
S2 = 4.0-S.O*POISM 

DO 11 I=1,3 
DO 21 J=1,3 

S(I,J)=S1/SDET 
IF(I.EQ.J) S(I,J)=(S1+2.0*S2)/SDET 

21 CONTINUE 
11 CONTINUE 

RETURN 
END 
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SUBROUTINE GAMMA(A,CONC,ITYPE,YMULT,IABORT) 
C==== calculate correction matrix A given inclusion I and its 
C concentration CONC, Y depends on microstructural features 

C ITYPE identifies inclusion or void 
REAL IDENT,K,KCMP,MAG 

c 

c 

c 

c 
c 

COMMON /MATRA/ BETA(2),WI(3,3),WV(3,3),IDENT(3,3) 
DIMENSION A(3,3) 

IF(IABORT.EQ.1) RETURN 

Y=YMULT*(1-CONC)/24.0 
MAG = 5.0*CONC*Y/(4.0*BETA(ITYPE)**2) 
DO 11 I=1,3 

DO 21 J=1,3 
IF(ITYPE.EQ.1) A(I,J)=IDENT(I,J)+MAG*WI(I,J) 
IF(ITYPE.EQ.2) A(I,J)=IDENT(I,J)+MAG*WV(I,J) 

21 CONTINUE 
11 CONTINUE 

RETURN 
END 

SUBROUTINE ADD(C,A,B) 
C==== subroutine for adding two square matrices C=A+B 

DIMENSION A(3,3),B(3,3),C(3,3) 

c 

c 

DO 11 I=1,3 
DO 21 J=1,3 

C(I,J) = A(I,J)+B(I,J) 

21. CONTINUE 
11. CONTINUE 

RETURN 
END 
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C==== subroutine for adding two square matrices C=A-B 
DIMENSION A(3,3),B(3,3),C(3,3) 

c 

c 

c 
c 

DO 11 I=1,3 

DO 21 J=1,3 
C(I,J) = A(I,J)-B(I,J) 

21 CONTINUE 
11 CONTINUE 

RETURN 

END 

SUBROUTINE MULT(C,A,B) 
C==== subroutine for multiplying two square matrices C=A.B 

DIMENSION A(3,3),B(3,3),C(3,3) 

c 

c 

c 
c 

DO 11 I=1,3 
DO 21 J=1,3 
C(I,J) = 0 

DO 31 K=1,3 
C(I,J) = C(I,J)+A(I,K)*B(K,J) 

31 CONTINUE 
21 CONTINUE 
11 CONTINUE 

RETURN 
END 

SUBROUTINE INVERT(AI,A,IABORT) 
C==== subroutine used for inverting matrix A to give AI 

DIMENSION A(3,3),AI(3,3) 
c 
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IF(IABORT.EQ.1) RETURN 

DETA = -(A(1,3)*A(2,2)*A(3,1)) + A(1,2)*A(2,3)*A(3,1) 
* + A(1,3)*A(2,1)*A(3,2) - A(1,1)*A(2,3)*A(3,2) 
* - A(1,2)*A(2,1)*A(3,3) + A(1,1)*A(2,2)*A(3,3) 

IF(DETA.NE.O)THEN 
AI(1,1) = (-(A(2,3)*A(3,2)) + A(2,2)*A(3,3))/DETA 
AI(1,2) = (A(1,3)*A(3,2) - A(1,2)*A(3,3))/DETA 
AI(1,3) = (-(A(1,3)*A(2,2)) + A(1,2)*A(2,3))/DETA 
AI(2,1) = (A(2,3)*A(3,1) - A(2,1)*A(3,3))/DETA 
AI(2,2) = (-(A(1,3)*A(3,1)) + A(1,1)*A(3,3))/DETA 
AI(2,3) = (A(1,3)*A(2,1) - A(1,1)*A(2,3))/DETA 
AI(3, 1) = (-(A(2,2)*A(3,1)) + A(2,1)*A(3,2))/DETA 
AI(3,2) = (A(1,2)*A(3,1) - A(1,1)*A(3,2))/DETA 

AI(3,3) = (-(A(1,2)*A(2,1)) + A(1,1)*A(2,2))/DETA 
ELSE 

IABORT = 1 
WRITE(6,'(A)') 'SBR INVERT: indeterminant matrix' 

END IF 

RETURN 
END 

SUBROUTINE GAUWRT(NDIST,NPTS,IABORT) 
C===•= write out cumulative distribution data. 
C for some reason, cannot print out PROBs correctly using 
C F format, numbers end up getting multiplied by ten. 

c 
C set PTMX = NTDIS*GSMX 
c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 260,PTMX = 760,NTDIS = 3) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
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WRITE (6,'(A)') 1 Writing GAUSS.DAT' 

OPEN (UNIT=7,FILE='-GAUSS.DAT',FORM='FORMATTED',STATUS='UNKNOWN') 
WRITE (7,5000) 
DO 10 IPTS = 1,NPTS 

WRITE (7,5100) Z(IPTS),(PROB(IDIST,IPTS),RADIUS(IDIST,IPTS), 

* IDIST = 1,NDIST) 
10 CONTINUE 

CLOSE (7) 

RETURN 
5000 FORMAT ( 1 z 

* Radius(mm) Pr 
Pr 

5100 FORMAT (1X,F6.3,6(3X,OPE13.6)) 
END 

Radius(mm) 
Radius(mm)') 

Pr 

SUBROUTINE HSTWRT(NDIST,NPTS,IABORT) 

C==== write out histogram and tracking data 
c 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 

IF (IABORT.EQ.1) RETURN 
WRITE (6,'(A)') ' Writing HISTO.DAT' 

OPEN (UNIT=7,FILE='_HISTO.DAT',FORM='FORMATTED',STATUS='UNKNOWN') 
NPRTOT = 0 
VOLTOT = 0 
DO 30 IDIST = 1,NDIST 

DO 40 IHST ~ 1,NPTS 
NPRTOT = NPRTOT + NUMPAR(IDIST,IHST) 
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VOLTOT = VOLTOT + VOLPAR(IDIST,IHST) 

40 CONTINUE 
30 CONTINUE 

CUMVOL = 0.0 
DO 20 IDIST = 1,NDIST 

WRITE (7,5000) 

DO 10 IHST = 1,NPTS 
PERNPR = 100*REAL(NUMPAR(IDIST,IHST))/REAL(NPRTOT) 

PERVOL = 100*VOLPAR(IDIST,IHST)/VOLTOT 
CUMVOL = CUMVOL + PERVOL 
WRITE (7,5100) IHST,RADIUS(IDIST,IHST), 

* ALOG10(NUMPAR(IDIST,IHST)),VOLPAR(IDIST,IHST),PERNPR, 
* PERVOL,PROB(IDIST,IHST),CUMVOL 

10 CONTINUE 
20 CONTINUE 

CLOSE (7) 

RETURN 
5000 FORMAT (' Point avg R(mm) log #part. 

*particles 'l. part.volume cum. prob. 
5100 FORMAT (2X,I3,3X,7(1PE13.6,2X)) 

END 

volume(mm3) 'l.no. 
cum. vol. ') 

SUBROUTINE STRWRT(NDIST,NPTS,VOLSMP,GAMM,FDBND,YMULT,IKIND,IMORI, 

* IPOIS,PRESS,DILATO,FILNM,IABORT) 
C===•= write out stress and dilatation results versus critical strain 

C include probability survival, radius, no. particles and 
C distribution info. 

c 
REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 

REAL IDENT,K,KCMP,MAG 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /DIST/ RADAVG(NTDIS),LOGSTD(NTDIS),VLFRFO(NTDIS), 

* VLFRVO(NTDIS) 
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COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 
* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 

COMMON /PROPA/ K(3),G(3),E(3),POIS(3),CI(3,3),CV(3,3),C0(3,3) 
COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX), 

* ECMP(PTMX),POISC(PTMX) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 
* IPDIST(PTMX) 

CHARACTER FILNM*8 

IF (IABORT.EQ.1) RETURN 

IF (FILNM.EQ.'DEFAULT') FILNM ='_STRESS' 
WRITE (6,'(/,A,AS,A)') 'Writing to ',FILNM,'.DAT' 

OPEN (UNIT=7,FILE=FILNM//'.DAT',STATUS='UNKNOWN') 
WRITE (7,5000) 
DO 10 I = 1,NDIST 

WRITE (7,'(1X,I1,4(3X,OPE11.4))') I,RADAVG(I),LOGSTD(I), 
* VLFRFO(I),VLFRVO(I) 

10 CONTINUE 

WRITE (7,5100) G(3),G(1),POIS(3),POIS(1),G(2),K(2) 
WRITE (7,5200) VOLSMP,FDBND,YMULT,IKIND,IMORI,IPOIS 
WRITE (7,5300) PRESS,GAMM,DILATO 
WRITE (7,5400) 
DO 20 I = 1,NDIST*NPTS+1 

ETMP = ECMP(I)/1E6 
WRITE (7,5600) I,CRTSTN(I),STRESS(I),DILAT(I),PRBSRV(I),ETMP, 

* POISC(I),NETVF(I),NETVV(I),IPDIST(I-1) 

20 CONTINUE 

CLOSE (7) 
RETURN 

5000 FORMAT (' # avg Rad(um) std dev Vf Vv') 
5100 FORMAT(' Gm(Pa)=',OPE11.4,' Gf(Pa)=',OPE11.4,' vm=',OPE11.4, 

* ' vf=',OPE11.4,' Gv(Pa)=',OPE11.4,' Kv=',OPE11.4) 
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5200 FORMAT(' V(mm3) =',OPE11.4,' frac dbnd=',OPE11.4,' Y-mult=', 
* OPE11.4,' w-type=',I3,' m-type=',I3,' v-type=',I3) 

5300 FORMAT(' PO(Pa)=',OPE11.4,' Gc(Pa-m)=',OPE11.4,' (dV/V)O=',OPE11 

* .4) 

5400 FORMAT (' Point crit strn 
* E_c(MPa) Poisson 

stress(MPa) 
V_f 

dV/V 
V_v 

Prlsurv 
dist') 

5600 FORMAT (1X,I3,3X,8(1PE11.4,2X) ,1X,I1) 

c 

c 
c 

END 

SUBROUTINE DBGWRT(NDIST,NPTS,IABORT) 
C===•= write out additional data for debugging purposes 
c 
C set PTMX = NTDIS*GSMX 
c 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
REAL IDENT,K,KCMP,MAG 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 
COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX), 

* ECMP(PTMX),POISC(PTMX) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 
* IPDIST(PTMX) 

IF (IABORT.EQ.1) RETURN 
WRITE (6,'(A)') ' Writing DEBUG.DAT' 

OPEN (UNIT=7,FILE='_DEBUG.DAT',FORM='FORMATTED',STATUS='UNKNOWN') 
WRITE (7,5000) 
DO 10 IHST = 1,NDIST*NPTS+1 

WRITE (7,5100) IHST,NETVF(IHST),NETVV(IHST),DADC(IHST), 
* C11(IHST),C12(IHST),C21(IHST),C22(IHST),C23(IHST), 
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c 
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* PRBSRV(IHST) 

10 CONTINUE 
CLOSE (7) 

RETURN 
5000 FORMAT (' Point 

* C11 
* Prlsurv') 

C12 
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net Vf net Vv 
C21 

5100 FORMAT (2X,I3,3X,9(0PE13.6,2X)) 

END 

SUBROUTINE DBGRAT(NDIST,NPTS,IABORT) 

C22 

C==== write out additional data for debugging purposes 

dA/dc 

C along with stress-strain data outputs radius and the factor 

C23 

C SQRT(RAD*dG/dc) to look at its relationship with crit. strain 

c 
C set PTMX = NTDIS*GSMX 
c 

c 

c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 
REAL IDENT,K,KCMP,KTMP,MAG 
INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
COMMON /GAUS/ Z(GSMX),RADIUS(NTDIS,GSMX),PROB(NTDIS,GSMX) 
COMMON /DEBUG/ NUMPAR(NTDIS,GSMX),VOLPAR(NTDIS,GSMX), 

* NETVF(PTMX),NETVV(PTMX),DADC(PTMX),NPARTL(NTDIS) 
COMMON /PROPB/ C11(PTMX),C12(PTMX),C21(PTMX),C22(PTMX),C23(PTMX), 

* ECMP(PTMX),POISC(PTMX) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 

* IPDIST(PTMX) 

IF (IABORT.EQ.1) RETURN 
WRITE (6,'(A)') ' Writing DERAT.DAT' 

OPEN (UNIT=7,FILE='-DERAT.DAT',FORM='FORMATTED',STATUS='UNKNOWN') 

WRITE (7,5000) 



P501263.PDF [Page: 114 of 122]

UNCLASSIFIED 
B.36 

DO 10 IHST = 1,NDIST*NPTS+1 
ETMP = ECMP(IHST) 
RAD = 0.0 
DNETF = 0.0 
DNETV = 0.0 
DETMP = 0.0 
IF(IHST.GT.1) RAD = SORRAD(IHST-1) 

IF(IHST.GT.1) DNETF = ABS(NETVF(IHST) - NETVF(IHST-1)) 
IF(IHST.GT.1) DNETV = ABS(NETVV(IHST) - NETVV(IHST-1)) 

IF(IHST.GT.1) DETMP = ABS(ECMP(IHST) - ECMP(IHST-1)) 
FACT = SQRT(RAD*DETMP) 
WRITE (7,5100) IHST,CRTSTN(IHST),STRESS(IHST),RAD,PRBSRV(IHST), 

* ETMP,POISC(IHST),DNETF,DNETV,FACT 

10 CONTINUE 
CLOSE (7) 

c 
RETURN 

5000 FORMAT (' Point crit strn stress(MPa) Avg r(mm) 
* E_c(MPa) Poisson dV_f dV_v 

5100 FORMAT (1X,I3,3X,9(1PE11.4,2X)) 

c 
c 

c 

END 

INCLUDE 'MSGRAPH.FOR' 

SUBROUTINE CRVPLT(NDIST,NPTS,IABORT) 

C====• driver routine for plotting curve on screen, keep the 

C INCLUDE 'MSGRAPH.FOR' with this module. 
c 
C set PTMX = NTDIS*GSMX 
c 

REAL LOGSTD,NPARTL,NUMPAR,NETVF,NETVV 

INTEGER GSMX,PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS ; 3) 
COMMON /RESULT/ CRTSTN(PTMX),STRESS(PTMX),DILAT(PTMX), 

* PRBSRV(PTMX),SORRAD(PTMX),SORPAR(PTMX),SORVLP(PTMX), 

* IPDIST(PTMX) 

Prlsurv 
fact') 
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DIMENSION X(PTMX),Y1(PTMX),Y2(PTMX) 

CHARACTER ANS*1 

IF (IABORT.EQ.1) RETURN 

10 CONTINUE 
WRITE (6,'(/,A)') ' Graph results on screen? (Y/N)' 
READ (5,'(A1)') ANS 

NTOT = NDIST*NPTS+1 
DO 20 ICNT = 1,NTOT 

X(ICNT) = CRTSTN(ICNT) 
Y1(ICNT) = STRESS(ICNT) 
Y2(ICNT) = DILAT(ICNT) 

20 CONTINUE 

IF (ANS.EQ.'Y') THEN 
WRITE (6,'(A)') ' Strain, Stress and dV/V end pts' 
READ (5,*) XEND,YSEND,YDEND 
CALL GRAF(NTOT,X,Y1,Y2,XEND,YSEND,YDEND) 

ELSE 
END IF 

IF (ANS.EQ.'Y') GOTO 10 

RETURN 
END 

SUBROUTINE GRAF(N,X,Y1,Y2,XEND,YSEND,YDEND) 

C set PTMX = NTDIS*GSMX 
c 

c 

INTEGER PTMX 
PARAMETER (GSMX = 250,PTMX = 750,NTDIS = 3) 
DIMENSION X(PTMX),Y1(PTMX),Y2(PTMX) 
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INCLUDE 'GRFDEf.FOR' 
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CALL VIDEO(MAXX,MAXY,NOGRAF) 
IF (NOGRAF.EQ.O) THEN 

CALL VWPORT(MAXX,MAXY) 

XBEG = 0 
YBEG = 0 

CALL WINDOW(XBEG,YBEG,XEND,YSEND) 
ICURV = 1 
XLAB = 'strain' 
YLAB = 'strs (MPa)' 
CALL ATTRIB(ICURV,ILNCOL,ILNSTY) 
CALL LABELS(ICURV,ILNCOL,XLAB,YLAB,XBEG,YBEG,XEND,YSEND) 

ICURV = 1 
CALL ATTRIB(ICURV,ILNCOL,ILNSTY) 
CALL CURVE(X,Y1,N,ILNCOL,ILNSTY) 
CALL WINDOW(XBEG,YBEG,XEND,YDEND) 
ICURV = 3 

XLAB = 'strain' 
YLAB = 'dV/V' 
CALL ATTRIB(ICURV,ILNCOL,ILNSTY) 
CALL LABELS(ICURV,ILNCOL,XLAB,YLAB,XBEG,YBEG,XEND,YDEND) 
ICURV = 3 

CALL ATTRIB(ICURV,ILNCOL,ILNSTY) 
CALL CURVE(X,Y2,N,ILNCOL,ILNSTY) 

CALL ENDGRF() 
ELSE 

WRITE (6,'(A)') ' SBR GRAF: problem with graphics' 
END IF 

RETURN 
END 
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